Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods and results in a new area of application of Lie groups to difference equations, difference meshes (lattices), and difference functionals, this book focuses on the preservation of complete symmetry of original differential equations in numerical schemes. This symmetry preservation results in symmetry reduction of the difference model along with that of the original partial differential equations and in order reduction for ordinary difference equations.
A substantial part of the book is concerned with conservation laws and first integrals for difference models. The variational approach and Noether type theorems for difference equations are presented in the framework of the Lagrangian and Hamiltonian formalism for difference equations.
In addition, the book develops difference mesh geometry based on a symmetry group, because different symmetries are shown to require different geometric mesh structures. The method of finite-difference invariants provides the mesh generating equation, any special case of which guarantees the mesh invariance. A number of examples of invariant meshes is presented. In particular, and with numerous applications in numerics for continuous media, that most evolution PDEs need to be approximated on moving meshes.
Based on the developed method of finite-difference invariants, the practical sections of the book present dozens of examples of invariant schemes and meshes for physics and mechanics. In particular, there are new examples of invariant schemes for second-order ODEs, for the linear and nonlinear heat equation with a source, and for well-known equations including Burgers equation, the KdV equation, and the Schrödinger equation.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vladimir Dorodnitsyn
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: The Last Word Bookstore, Mt. Airy, MD, USA
Hardcover. Bestandsnummer des Verkäufers 978142008309U
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 6751810
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Bestandsnummer des Verkäufers ERICA75814200830905
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 6751810
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 344 This item is printed on demand. Bestandsnummer des Verkäufers 8273395
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 6751810-n
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 344. Bestandsnummer des Verkäufers 26623148
Anzahl: 3 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FT-9781420083095
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 6751810-n
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Vladimir DorodnitsynIntended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the. Bestandsnummer des Verkäufers 595754934
Anzahl: 1 verfügbar