The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users.
This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
<p>The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate <em>F</em> matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users.</p><p>This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.</p><p>Zhidong Bai is a professor of the School of Mathematics and Statistics at Northeast Normal University and Department of Statistics and Applied Probability at National University of Singapore. He is a Fellow of the Third World Academy of Sciences and a Fellow of the Institute of Mathematical Statistics.</p><p>Jack W. Silverstein is a professor in the Department of Mathematics at North Carolina State University. He is a Fellow of the Institute of Mathematical Statistics.</p><p> </p>
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,55 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 5,83 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781441906601_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users.This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory. 552 pp. Englisch. Bestandsnummer des Verkäufers 9781441906601
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Wigner Matrices and Semicircular Law.- Sample Covariance Matrices and the Mar#x010Denko-Pastur Law.- Product of Two Random Matrices.- Limits of Extreme Eigenvalues.- Spectrum Separation.- Semicircular Law for Hadamard Products.- Convergence Rates of ESD.- . Bestandsnummer des Verkäufers 4172066
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users.This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory. Bestandsnummer des Verkäufers 9781441906601
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 7680323-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781441906601
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 7680323-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530293367
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 568 2nd Edition. Bestandsnummer des Verkäufers 261152809
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 568 Illus. Bestandsnummer des Verkäufers 6695158
Anzahl: 4 verfügbar