When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success.
This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website.
Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materialsDie Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
John Myles White is a PhD candidate in Psychology at Princeton. He studies pattern recognition, decision-making, and economic behavior using behavioral methods and fMRI. He is particularly interested in anomalies of value assessment.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: HPB-Emerald, Dallas, TX, USA
paperback. Zustand: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_451851886
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 40666621-6
Anzahl: 1 verfügbar
Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
Zustand: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Bestandsnummer des Verkäufers wbs6721212737
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781449341336
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781449341336
Anzahl: 3 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 18717122-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging. Book. Bestandsnummer des Verkäufers BBS-9781449341336
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. This book shows you how to run experiments on your website using A/B testing - and then takes you a huge step further by introducing you to bandit algorithms for website optimization. Author John Myles White shows you how this family of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which have previously only been described in research papers. You'll learn about several simple algorithms you can deploy on your own websites to improve your business including the epsilon-greedy algorithm, the UCB algorithm and a contextual bandit algorithm. All of these algorithms are implemented in easy-to-follow Python code and be quickly adapted to your business's specific needs. You'll also learn about a framework for testing and debugging bandit algorithms using Monte Carlo simulations, a technique originally developed by nuclear physicists during World War II. Monte Carlo techniques allow you to decide whether A/B testing will work for your business needs or whether you need to deploy a more sophisticated bandits algorithm. Bestandsnummer des Verkäufers LU-9781449341336
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2411530330366
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781449341336
Anzahl: Mehr als 20 verfügbar