Verwandte Artikel zu Statistics: The Conceptual Approach

Statistics: The Conceptual Approach - Softcover

 
9781461222453: Statistics: The Conceptual Approach

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Statistics: Randomness and Regularity.- 1.1 Statistics: What's in a word?.- 1.2 Knowing how statistics is used: Goals for the reader.- Understanding what can go wrong.- Understanding statistical terms.- 1.3 Central ideas in statistics.- Randomness and regularity: Twins in tension.- Randomness in regularity.- Two examples in the study of randomness and regularity.- Probability: What are the chances?.- Variables: The names we give things.- Variables, values, and elements.- Theoretical variables and empirical variables.- Constants.- 1.4 Users of statistics.- 1.5 Relationship of statistics to mathematics, pencils, and computers.- 1.6 Summary.- Additional Readings.- Exercises.- 2 Collection of Data.- 2.1 Defining the variables.- 2.2 Observational data: Problems and possibilities.- Population versus sample.- Selection of the sample: Making sure the pot is stirred.- Random sample: What is it?.- Convenience sample: How to produce a "poor" sample.- Selecting proper samples.- Selection of variables on which to collect observational data.- 2.3 Errors and "errors" in collecting observational data.- Sampling error: The "error" that is not a mistake.- Nonresponse error: Result of rude, rushed, and reticent respondents.- Response errors.- 2.4 Experimental data: Looking for the causes of outcomes.- Experimental group and control group.- Selecting the experimental and control groups.- Problems with experimenting on people.- Role of statistics in experimentation.- Putting it all together: Does class size affect school performance?.- 2.5 Data matrix/Data file.- 2.6 Summary.- Additional Readings.- Exercises.- 3 Description of Data: Graphs and Tables.- 3.1 Graphs: Picturing data.- Creating statistical graphs.- Types of graphs.- 3.2 Categorical variables: Pie charts and bar graphs.- Graphing one categorical variable.- Graphing two categorical variables.- 3.3 Metric variables: Plots and histograms.- Graphing one metric variable.- Graphing two metric variables.- Time series plot.- 3.4 Creating maps from data.- 3.5 Graphing: Standards for excellence.- "The least ink": Is the simplest graph best?.- "Chartjunk": A new name for garbage.- Data density.- "Revelation of the complex".- 3.6 Tables: Turning can be timely.- 3.7 Summary.- Additional Readings.- Exercises.- 4 Description of Data: Computing Summary Statistics.- 4.1 Averages: Let us count the ways.- Mode: The hostess with the mostes'.- Median: Counting to the middle.- Mean: Balancing the seesaw.- Mode, median, or mean?.- 4.2 Variety: Measuring the spice of life.- Range: Lassoing the two extreme values.- Standard deviation: The crucial deviant.- 4.3 Standard error of the means.- 4.4 Standard scores: Comparing apples and oranges.- 4.5 Gain in simplicity, loss of information.- Replacing the data with a graph.- Replacing the data with a summary value.- 4.6 Real estate data: Out-of-sight prices.- 4.7 Summary.- Additional Readings.- Formulas.- Exercises.- 5 Probability.- 5.1 How to find probabilities.- Equally likely events.- Relative frequency.- Using subjective probabilities.- 5.2 Computations with probabilities.- Adding probabilities.- Multiplying probabilities.- 5.3 Odds: The opposite of probabilities.- 5.4 Probability distributions for discrete variables.- Binomial distribution.- Poisson distribution.- Hypergeometric distribution.- Displaying probabilities in graphs and tables.- Computations with probabilities.- 5.5 Probability distributions for continuous variables.- Standard normal distribution: The bell curve.- The t-distribution.- Chi-square distribution.- F-distribution.- Need for normally distributed data.- 5.6 Using probabilities to check on assumptions.- Is it a fair coin?.- Is it a fair workplace?.- Is it an evenly split electorate?.- 5.7 Decision analyis: Using probabilities to make decisions.- 5.8 Summary.- Additional Readings.- Formulas.- Exercises.- 6 Drawing Conclusions: Estimation.- 6.1 Sample statistic and population parameter.- 6.2 Point estimation.- What is a "good" point estima

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2014
  • ISBN 10 1461222451
  • ISBN 13 9781461222453
  • EinbandPaperback
  • SpracheEnglisch
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels