The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
"The exposition is clear and accessible. The necessary background material...is explained in detail in three appendices [and] another appendix consists of answers to some exercises formulated in the text... Self-contained to a high degree... Highly recommended."
--ZAA
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,03 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Notational conventions.- 1. Spheres with tubes.- 1.1. Definitions.- 1.2. The sewing operation.- 1.3. The moduli spaces of spheres with tubes.- 1.4. The sewing equation.- 1.5. Meromorphic functions on the moduli spaces and meromorphic tangent spaces.- 2. Alg. Bestandsnummer des Verkäufers 4191281
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a 'big and important problem. ' On the one hand, the theory of vertex operator algebras and their repre sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 300 pp. Englisch. Bestandsnummer des Verkäufers 9781461287209
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a 'big and important problem. ' On the one hand, the theory of vertex operator algebras and their repre sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions. 300 pp. Englisch. Bestandsnummer des Verkäufers 9781461287209
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc tures of conformal field theories. Much of the recent progress has deep connec tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a 'big and important problem. ' On the one hand, the theory of vertex operator algebras and their repre sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions. Bestandsnummer des Verkäufers 9781461287209
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781461287209_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 18689179-n
Anzahl: 15 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781461287209
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 18689179
Anzahl: 15 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 454. Bestandsnummer des Verkäufers C9781461287209
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2011. Paperback. . . . . . Bestandsnummer des Verkäufers V9781461287209
Anzahl: 15 verfügbar