Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e. , to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e. , to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space.
The book is divided into four parts. Part I gives introduction to parallel and cluster systems. It also provides an overview of parallel job scheduling policies proposed in the literature. Part II gives details about the hierarchical task queue organization and its performance. The author shows that this organization scales well, which makes it suitable for systems with hundreds to thousands of processors. In Part III he uses this task queue organization as the basis to devise hierarchical scheduling policies for shared-memory and distributed-memory parallel systems as well as cluster systems. This part demonstrates that the hierarchical policy provides substantial performance advantages over other policies proposed in the literature. Finally, Part IV concludes the book with a brief summary and concluding remarks.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of syste. Bestandsnummer des Verkäufers 4193182
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e. , to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch. Bestandsnummer des Verkäufers 9781461349389
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e. , to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space. 280 pp. Englisch. Bestandsnummer des Verkäufers 9781461349389
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Multiple processor systems are an important class of parallel systems. Over the years, several architectures have been proposed to build such systems to satisfy the requirements of high performance computing. These architectures span a wide variety of system types. At the low end of the spectrum, we can build a small, shared-memory parallel system with tens of processors. These systems typically use a bus to interconnect the processors and memory. Such systems, for example, are becoming commonplace in high-performance graph ics workstations. These systems are called uniform memory access (UMA) multiprocessors because they provide uniform access of memory to all pro cessors. These systems provide a single address space, which is preferred by programmers. This architecture, however, cannot be extended even to medium systems with hundreds of processors due to bus bandwidth limitations. To scale systems to medium range i. e. , to hundreds of processors, non-bus interconnection networks have been proposed. These systems, for example, use a multistage dynamic interconnection network. Such systems also provide global, shared memory like the UMA systems. However, they introduce local and remote memories, which lead to non-uniform memory access (NUMA) architecture. Distributed-memory architecture is used for systems with thousands of pro cessors. These systems differ from the shared-memory architectures in that there is no globally accessible shared memory. Instead, they use message pass ing to facilitate communication among the processors. As a result, they do not provide single address space. Bestandsnummer des Verkäufers 9781461349389
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781461349389_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 280. Bestandsnummer des Verkäufers 2697841529
Anzahl: 4 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030031705
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 280. Bestandsnummer des Verkäufers 1897841523
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 280 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 94588582
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 276 pages. 9.25x6.10x0.64 inches. In Stock. Bestandsnummer des Verkäufers x-1461349389
Anzahl: 2 verfügbar