Verwandte Artikel zu Codes on Algebraic Curves

Codes on Algebraic Curves - Softcover

 
9781461371670: Codes on Algebraic Curves

Inhaltsangabe

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Reseña del editor

This book provides a self-contained introduction to the theory of error-correcting codes and related topics in number theory, Algebraic Geometry and the theory of Sphere Packings. The material is presented in an easily understandable form. This book is devoted to geometric Goppa codes; the recently discovered areas which combines Coding Theory, Algebraic Geometry, Number Theory, and Theory of Sphere Packings. It has an interdisciplinary nature and demonstrates the close interconnection of Coding Theory with various classical areas of mathematics. There are four main themes in the book. The first is a brief exposition of the basic concepts and facts of error-correcting code theory. The second is a complete presentation of the theory of algebraic curves; especially the curves defined over finite fields. The third is a detailed description of the theory of elliptic and modular codes, and their reductions modulo a prime number. The fourth is a construction of geometric Gappa codes producing rather long linear codes with very good parameters coming from algebraic curves, and with a lot of rational points. The aim of the book is to present these themes in a simple, easily understandable manner, and explain their close interconnection. At the same time the book introduces the reader to topics which are at the forefront of current research.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
It's a well-cared-for item that...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 6,78 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780306461446: Codes on Algebraic Curves

Vorgestellte Ausgabe

ISBN 10:  0306461447 ISBN 13:  9780306461446
Verlag: Springer, 1999
Hardcover

Suchergebnisse für Codes on Algebraic Curves

Beispielbild für diese ISBN

Stepanov, Serguei A.
ISBN 10: 1461371678 ISBN 13: 9781461371670
Gebraucht Paperback

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Softcover reprint of the original 1st ed. 1999. Bestandsnummer des Verkäufers 1461371678-8-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 119,15
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stepanov, Serguei A. A.
Verlag: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781461371670

Verkäufer kontaktieren

Neu kaufen

EUR 147,77
Währung umrechnen
Versand: EUR 6,78
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stepanov, Serguei A. A.
Verlag: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030033665

Verkäufer kontaktieren

Neu kaufen

EUR 156,23
Währung umrechnen
Versand: EUR 3,39
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stepanov, Serguei A. A.
Verlag: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781461371670_new

Verkäufer kontaktieren

Neu kaufen

EUR 159,09
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Serguei A. Stepanov
Verlag: Springer US Okt 2012, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. 368 pp. Englisch. Bestandsnummer des Verkäufers 9781461371670

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Serguei A. Stepanov
Verlag: Springer US, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). . Bestandsnummer des Verkäufers 4195314

Verkäufer kontaktieren

Neu kaufen

EUR 136,16
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Serguei A. Stepanov
Verlag: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 368. Bestandsnummer des Verkäufers 2697846437

Verkäufer kontaktieren

Neu kaufen

EUR 210,56
Währung umrechnen
Versand: EUR 3,39
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Serguei A. Stepanov
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 368 pp. Englisch. Bestandsnummer des Verkäufers 9781461371670

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Serguei A. Stepanov
Verlag: Springer US, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. Bestandsnummer des Verkäufers 9781461371670

Verkäufer kontaktieren

Neu kaufen

EUR 164,49
Währung umrechnen
Versand: EUR 62,67
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Stepanov Serguei A.
Verlag: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 368 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 94550906

Verkäufer kontaktieren

Neu kaufen

EUR 220,92
Währung umrechnen
Versand: EUR 7,49
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Es gibt 3 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen