Verwandte Artikel zu Dynamic Neural Field Theory for Motion Perception

Dynamic Neural Field Theory for Motion Perception - Softcover

 
9781461555827: Dynamic Neural Field Theory for Motion Perception

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Introduction.- I Basic Concepts.- 2 Visual perception of motion.- 2.1 Apparent Motion (AM).- 2.2 Motion Energy Models.- 2.3 Motion Correspondence Problem.- 2.4 Cooperativity in Motion Perception.- 2.5 Motion Perception as Regularization Problem.- 2.6 Motion Perception as Statistical Optimization Problem.- 2.7 Motion Perception as Dynamical Process.- 2.8 Motion Transparency.- 2.9 Adaptation.- 2.10 Summary.- 3 Basic principles of the dynamic approach.- 3.1 Central Idea.- 3.2 Behavioral Variables.- 3.3 Behavioral Dynamics.- 3.4 Stability.- 3.5 Bifurcations.- 3.6 Intrinsic Dynamics and Behavioral Information.- 3.7 Comparison between Theory and Experiment.- 3.8 Summary.- 4 Dynamic neural fields.- 4.1 Biological Motivation.- 4.2 Generalization by the Dynamic Approach.- 4.3 Amari Model: Intuitive Concepts.- 4.3.1 Field without Interaction.- 4.3.2 Field with Linear Interaction.- 4.3.3 Neural Field with Constant Input.- 4.3.4 Neural Field with Slightly Varying Input.- 4.4 Amari Model: Mathematical results.- 4.5 Summary.- II Model for Motion Perception.- 5 Dynamic neural field model for motion perception.- 5.1 Perceptive Space.- 5.2 Neural Activation Field.- 5.3 Dynamical State and Stability.- 5.4 Specification by the Stimulus.- 5.5 Cooperativity.- 5.6 Fluctuations.- 5.7 Adaptation.- 5.8 General Neural Field Model.- 5.9 Summary.- 6 Necessity of the concepts: Model for the motion quartet.- 6.1 Dynamical Model for the Motion Quartet.- 6.1.1 Perceptive Space, Activation Dynamics, and Fluctuations.- 6.1.2 Cooperativity.- 6.1.3 Adaptation.- 6.2 Experimental and Numerical Methods.- 6.3 Necessity of State and Stability.- 6.3.1 Necessity of Perceptual State.- 6.3.2 Necessity of (Multi-)Stability.- 6.4 Necessity of Fluctuations and Adaptation.- 6.4.1 Necessity of Fluctuations and Their Interaction with Stability.- 6.4.2 Necessity of Adaptation.- 6.4.3 Necessity of Activation as Dynamical State Variable.- 6.4.4 Relative Importance of Fluctuations and Adaptation.- 6.5 Discussion.- 6.6 Summary.- 7 Sufficiency of the concepts: Field model for 2D-motion perception.- 7.1 Implementation of the Neural Field Model.- 7.1.1 Neural Field Dynamics, Fluctuations, and Adaptation.- 7.1.2 Specifying Influence of the Stimulus.- 7.1.3 Interaction Function.- 7.1.4 Activity Dependent Scaling of the Interaction Function.- 7.1.5 Numerical Methods.- 7.2 Results: Integration of Multiple Functionalities.- 7.2.1 Spatio-Temporal Integration and Prediction.- 7.2.2 Solution of the Motion Correspondence Problem.- 7.2.3 Smoothing and Active Segmentation.- 7.2.4 Motion Transparency.- 7.3 Balance between Stimulus and Cooperativity.- 7.4 Discussion.- 7.5 Summary.- 8 Relationships: neural fields and computational algorithms.- 8.1 Lyapunov Functions.- 8.2 Lyapunov Functional.- 8.3 Relationship: Neural Fields and Regularization Approaches.- 8.4 Probabilistic Interpretation of Neural Fields.- 8.5 Neural Fields as Robust Estimators.- 8.6 Prediction Properties of the Neural Field.- 8.7 Summary and Discussion.- 9 Identification of field models from neurophysiological data.- 9.1 Estimation of Behavior Related Quantities from Neural Responses.- 9.2 Description of the Algorithm.- 9.2.1 Neurophysiological Data.- 9.2.2 Reconstruction of the Activation Distribution.- 9.2.3 Estimation of the Neural Field Parameters.- 9.3 Results.- 9.4 Discussion and Outlook.- 9.5 Summary.- III Other Applications of Neural Fields.- 10 Neural field model for the motor planning of eye movements.- 10.1 Basic Experimental Phenomenology.- 10.2 Neural Field Model.- 10.2.1 Neural Field for the Representation of the Motor Plan.- 10.2.2 Cooperative Interaction.- 10.2.3 Specifying Input.- 10.2.4 Output Stage.- 10.3 Examples for Reproduced Experimental Effects.- 10.3.1 Averaging and Decision Making.- 10.3.2 Bias by Statistical a Priori Information.- 10.3.3 Effect of Warning Signals.- 10.4 Discussion.- 10.5 Summary.- 11 Technical applications of neural fields.- 11.1 Path Planning for an Autonomous Robot.- 11.1.1 System A

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 1461555825
  • ISBN 13 9781461555827
  • EinbandPaperback
  • SpracheEnglisch
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780792383000: Dynamic Neural Field Theory for Motion Perception: 469 (The Springer International Series in Engineering and Computer Science)

Vorgestellte Ausgabe

ISBN 10:  0792383001 ISBN 13:  9780792383000
Verlag: Springer, 1998
Hardcover