1. Introduction to Fluorescence.- 1.1. Jablonski Diagram.- 1.2. Characteristics of Fluorescence Emission.- 1.2.1. Stokes'Shift.- 1.2.2. Invariance of the Emission Spectrum with Excitation Wavelength.- 1.2.3. Mirror Image Rule.- 1.3. Fluorescence Lifetimes and Quantum Yields.- 1.4. Fluorescence Anisotropy.- 1.5. Time Scale of Molecular Processes in Solution.- 1.6. Fluorophores.- 1.6.1. Intrinsic or Natural Fluorophores.- 1.6.2. Extrinsic Fluorophores.- 2. Instrumentation for Fluorescence Spectroscopy.- 2.1. Excitation and Emission Spectra.- 2.1.1. An Ideal Spectrofluorometer.- 2.1.2. Distortions in Excitation and Emission Spectra.- 2.2. Light Sources.- 2.3. Monochromators.- 2.4. Optical Filters.- 2.5. Photomultiplier Tubes.- 2.6. Photon-Counting versus Analog Detection of Fluorescence.- 2.7. Corrected Fluorescence Spectra.- 2.7.1. Corrected Excitation Spectra.- 2.7.2. Corrected Emission Spectra.- 2.8. Effects of Sample Geometry.- 2.9. Absorption of Light and Deviations from the Beer-Lambert Law.- 2.9.1. Absorption of Light.- 2.9.2. Deviations from Beer's Law.- 3. Measurement of Fluorescence Lifetimes.- 3.1. Pulse Lifetime Measurements.- 3.2. Phase and Modulation Measurements of Fluorescence Lifetimes.- 3.3. Pulse Lifetime Measurements and Instrumentation.- 3.3.1. Flash Lamps.- 3.3.2. Pulse-Sampling Method.- 3.3.3. Single-Photon-Counting Method.- 3.4. Analysis of Time-Resolved Decays of Fluorescence Intensity.- 3.4.1. Least-Squares Analysis of Time-Resolved Decays.- 3.4.2. Method of Laplace Transformation.- 3.5. Time-Resolved Emission Spectra.- 3.6. Phase Shift and Demodulation Measurements of Fluorescence Lifetimes.- 3.6.1. Light Modulators.- 3.6.2. Cross-Correlation Detection.- 3.7. Analysis of Phase and Modulation Data.- 3.7.1. Analysis of Phase-Modulation Data by Simulation.- 3.7.2. Direct Calculation of ?i and ?i.- 3.7.3. Analysis of Variable Frequency Phase and Modulation Data.- 3.7.4. Effects of Ground-State Heterogeneity on the Apparent Phase and Modulation Lifetimes.- 3.8. Color Effects in Photomultiplier Tubes.- 3.8.1. Correction of Color and/or Geometric Effects in Lifetime Measurements.- 3.9. Evaluation of the Performance of Lifetime Instruments.- Problems.- 4. Phase-Sensitive Detection of Fluorescence.- 4.1. Theory of Phase-Sensitive Detection of Fluorescence.- 4.2. Analysis of Heterogeneous Fluorescence by Phase-Sensitive Detection.- 4.3. Prospectus on the Resolution of Heterogeneous Fluorescence by PSDF.- Problems.- 5. Fluorescence Polarization.- 5.1. Definitions of Polarization and Anisotropy.- 5.2. Theory for Polarization in Dilute Vitrified Solution.- 5.3. Polarization Spectra of Fluorophores.- 5.4. Measurement of Fluorescence Anisotropics.- 5.4.1. L-Format or Single-Channel Method.- 5.4.2. T-Format or Two-Channel Method.- 5.4.3. Comparison of the T-Format and the L-Format Methods.- 5.4.4. Alignment of Polarizers.- 5.4.5. Elimination of Polarization Effects on Fluorescence Intensity and Lifetime Measurements; Magic Angle Polarizer Conditions.- 5.5. Extrinsic Causes of Fluorescence Depolarization.- 5.6. Effects of Rotational Diffusion on Fluorescence Anisotropics; The Perrin Equation.- 5.7. Biochemical Applications of Anisotropy Measurements.- 5.7.1. Estimation of the Microviscosities of Cell Membranes.- 5.7.2. Rotational Diffusion of Proteins.- 5.7.3. Measurement of Association Reactions.- 5.7.4. Denaturation of DNA.- Problems.- 6. Time-Dependent Decays of Fluorescence Anisotropy.- 6.1. Theory of Time-Resolved Decays of Anisotropy.- 6.1.1. Nonsymmetric Fluorophores.- 6.1.2. Hindered Fluorophores.- 6.1.3. Segmental Mobility of a Biopolymer-Bound Fluorophore.- 6.1.4. Time-Resolved Anisotropics for a Mixture of Fluorophores.- 6.2. Biochemical Applications of Time-Resolved Anisotropy Measurements.- 6.2.1. Lipid Bilayers Labeled with Diphenylhexatriene (DPH).- 6.2.2. Segmental Mobility of an Antibody Molecule.- 6.2.3. Depolarization of the F-base on Yeast Phenylalanine tRNA (tRNAphe).- 6.3. Differential Polarized
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.