Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,79 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,42 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030038168
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781461581833
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781461581833_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following. 304 pp. Englisch. Bestandsnummer des Verkäufers 9781461581833
Anzahl: 2 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2012. Softcover reprint of the original 1st ed. 1988. paperback. . . . . . Bestandsnummer des Verkäufers V9781461581833
Anzahl: 15 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 304. Bestandsnummer des Verkäufers 26128018249
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 304 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 131520662
Anzahl: 4 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 477. Bestandsnummer des Verkäufers C9781461581833
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 304. Bestandsnummer des Verkäufers 18128018243
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 302 pages. 9.01x5.98x0.69 inches. In Stock. Bestandsnummer des Verkäufers x-1461581834
Anzahl: 2 verfügbar