Verwandte Artikel zu Shape Optimization by the Homogenization Method

Shape Optimization by the Homogenization Method - Softcover

 
9781468492873: Shape Optimization by the Homogenization Method

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

1 Homogenization.- 1.1 Introduction to Periodic Homogenization.- 1.1.1 A Model Problem in Conductivity.- 1.1.2 Two-scale Asymptotic Expansions.- 1.1.3 Variational Characterizations and Estimates of the Effective Tensor.- 1.1.4 Generalization to the Elasticity System.- 1.2 Definition of H-convergence.- 1.2.1 Some Results on Weak Convergence.- 1.2.2 Problem Statement.- 1.2.3 The One-dimensional Case.- 1.2.4 Main Results.- 1.3 Proofs and Further Results.- 1.3.1 Tartar's Method.- 1.3.2 G-convergence.- 1.3.3 Homogenization of Eigenvalue Problems.- 1.3.4 A Justification of Periodic Homogenization.- 1.3.5 Homogenization of Laminated Structures.- 1.3.6 Corrector Results.- 1.4 Generalization to the Elasticity System.- 1.4.1 Problem Statement.- 1.4.2 H-convergence.- 1.4.3 Lamination Formulas.- 2 The Mathematical Modeling of Composite Materials.- 2.1 Homogenized Properties of Composite Materials.- 2.1.1 Modeling of Composite Materials.- 2.1.2 The G-closure Problem.- 2.2 Conductivity.- 2.2.1 Laminated Composites.- 2.2.2 Hashin-Shtrikman Bounds.- 2.2.3 G-closure of Two Isotropic Phases.- 2.3 Elasticity.- 2.3.1 Laminated Composites.- 2.3.2 Hashin-Shtrikman Energy Bounds.- 2.3.3 Toward G-closure.- 2.3.4 An Explicit Optimal Bound for Shape Optimization.- 3 Optimal Design in Conductivity.- 3.1 Setting of Optimal Shape Design.- 3.1.1 Definition of a Model Problem.- 3.1.2 A first Mathematical Analysis.- 3.1.3 Multiple State Equations.- 3.1.4 Shape Optimization as a Degeneracy Limit.- 3.1.5 Counterexample to the Existence of Optimal Designs.- 3.2 Relaxation by the Homogenization Method.- 3.2.1 Existence of Generalized Designs.- 3.2.2 Optimality Conditions.- 3.2.3 Multiple State Equations.- 3.2.4 Gradient of the Objective Function.- 3.2.5 Self-adjoint Problems.- 3.2.6 Counterexample to the Uniqueness of.- Optimal Designs.- 4 Optimal Design in Elasticity.- 4.1 Two-phase Optimal Design.- 4.1.1 The Original Problem.- 4.1.2 Counterexample to the Existence of Optimal Designs.- 4.1.3 Relaxed Formulation of the Problem.- 4.1.4 Compliance Optimization.- 4.1.5 Counterexample to the Uniqueness of Optimal Designs.- 4.1.6 Eigenfrequency Optimization.- 4.2 Shape Optimization.- 4.2.1 Compliance Shape Optimization.- 4.2.2 The Relaxation Process.- 4.2.3 Link with the Michell Truss Theory.- 5 Numerical Algorithms.- 5.1 Algorithms for Optimal Design in Conductivity.- 5.1.1 Optimality Criteria Method.- 5.1.2 Gradient Method.- 5.1.3 A Convergence Proof.- 5.1.4 Numerical Examples.- 5.2 Algorithms for Structural Optimization.- 5.2.1 Compliance Optimization.- 5.2.2 Numerical Examples.- 5.2.3 Technical Algorithmic Issues.- 5.2.4 Penalization of Intermediate Densities.- 5.2.5 Quasiconvexification versus Convexification.- 5.2.6 Multiple Loads Optimization.- 5.2.7 Eigenfrequency Optimization.- 5.2.8 Partial Relaxation.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9780387952987: Shape Optimization by the Homogenization Method: 146 (Applied Mathematical Sciences)

Vorgestellte Ausgabe

ISBN 10:  0387952985 ISBN 13:  9780387952987
Verlag: Springer, 2001
Hardcover