The Riesz Transform of Codimension Smaller Than One and the Wolff Energy (Memoirs of the American Mathematical Society) - Softcover

Jaye, Benjamin; Nazarov, Fedor; Reguera, Maria Carmen; Tolsa, Xavier

 
9781470442132: The Riesz Transform of Codimension Smaller Than One and the Wolff Energy (Memoirs of the American Mathematical Society)

Inhaltsangabe

Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Benjamin Jaye, Kent State University, OH

Fedor Nazarov, Kent State University, OH

Maria Carmen Reguera, University of Birmingham, UK

Xavier Tolsa, Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia, Spain, and Universitat Autonoma de Barcelona, Catalonia, Spain

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.