Voiculescu's notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability . The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to compute the limiting distribution of the join family. Under a factorization assumption, the author calls traffic independence the asymptotic rule that plays the role of independence with respect to traffic distributions. Wigner matrices, Haar unitary matrices and uniform permutation matrices converge in traffic distributions, a fact which yields new results on the limiting $^*$-distributions of several matrices the author can construct from them. Then the author defines the abstract traffic spaces as non commutative probability spaces with more structure. She proves that at an algebraic level, traffic independence in some sense unifies the three canonical notions of tensor, free and Boolean independence. A central limiting theorem is stated in this context, interpolating between the tensor, free and Boolean central limit theorems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Camille Male, Institut de Mathematiques de Bordeaux, France
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 2,00 für den Versand von Irland nach Deutschland
Versandziele, Kosten & DauerAnbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00033 9781470442989 Sprache: Englisch Gewicht in Gramm: 350. Bestandsnummer des Verkäufers 2482532
Anzahl: 1 verfügbar
Anbieter: Literary Cat Books, Machynlleth, Powys, WALES, Vereinigtes Königreich
Original Wrappings. Zustand: Near Fine. Zustand des Schutzumschlags: No Dust Jacket. First Edition; First Impression. Very slight wear to spine, cover & corners; Memoirs of the American Mathematical Society. September 2020. Volume 267. Number 1300; 25.3 x 17.8 x 0.5cms; v. 92 pages. Bestandsnummer des Verkäufers LCB85254
Anzahl: 1 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2021. paperback. . . . . . Bestandsnummer des Verkäufers V9781470442989
Anzahl: 1 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Voiculescu's notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability . The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to compute the limiting distribution of the join family. Under a factorization assumption, the author calls traffic independence the asymptotic rule that plays the role of independence with respect to traffic distributions. Wigner matrices, Haar unitary matrices and uniform permutation matrices converge in traffic distributions, a fact which yields new results on the limiting $^*$-distributions of several matrices the author can construct from them. Then the author defines the abstract traffic spaces as non commutative probability spaces with more structure. She proves that at an algebraic level, traffic independence in some sense unifies the three canonical notions of tensor, free and Boolean independence. A central limiting theorem is stated in this context, interpolating between the tensor, free and Boolean central limit theorems. Bestandsnummer des Verkäufers LU-9781470442989
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781470442989
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Einband - flex.(Paperback). Zustand: New. Voiculescu s notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matric. Bestandsnummer des Verkäufers 595975259
Anzahl: 4 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Voiculescu's notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability . The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to compute the limiting distribution of the join family. Under a factorization assumption, the author calls traffic independence the asymptotic rule that plays the role of independence with respect to traffic distributions. Wigner matrices, Haar unitary matrices and uniform permutation matrices converge in traffic distributions, a fact which yields new results on the limiting $^*$-distributions of several matrices the author can construct from them. Then the author defines the abstract traffic spaces as non commutative probability spaces with more structure. She proves that at an algebraic level, traffic independence in some sense unifies the three canonical notions of tensor, free and Boolean independence. A central limiting theorem is stated in this context, interpolating between the tensor, free and Boolean central limit theorems. Bestandsnummer des Verkäufers LU-9781470442989
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 88 pages. 0.00x0.00x0.00 inches. In Stock. Bestandsnummer des Verkäufers __1470442981
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. paperback. . . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9781470442989
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 42100661-n
Anzahl: 4 verfügbar