There are many good texts on using maximal functions in harmonic analysis, but Kinnunen, Lehrbäck, and Vähäkangas felt that there was room for a source book gathering developments in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximations for Sobolev functions, Hardy's inequalities, and partial differential equations. A recurring theme throughout the book is self-improvement of uniform quantitative conditions, they say, and they restrict their attention to prototypes in Euclidean spaces to avoid extra complication. Annotation ©2021 Ringgold, Inc., Portland, OR (protoview.com)
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Juha Kinnunen, Aalto University, Finland.
Juha Lehrback, University of Jyvaskyla, Finland.
Antti Vahakangas, University of Jyvaskyla, Finland.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2021. Paperback. . . . . . Bestandsnummer des Verkäufers V9781470465759
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43600395-n
Anzahl: 10 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. This book discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hoelder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781470465759
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 338 pages. 10.00x7.00x1.00 inches. In Stock. Bestandsnummer des Verkäufers __1470465752
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. Paperback. . . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9781470465759
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43600395
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 43600395-n
Anzahl: 10 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Bestandsnummer des Verkäufers LU-9781470465759
Anzahl: 5 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 401287489
Anzahl: 3 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. Bestandsnummer des Verkäufers B9781470465759
Anzahl: 12 verfügbar