Verwandte Artikel zu Milliken's Tree Theorem and Its Applications: a...

Milliken's Tree Theorem and Its Applications: a Computability-Theoretic Perspective: Volume: 293 Number: 1457 (Memoirs of the American Mathematical Society) - Softcover

 
9781470467319: Milliken's Tree Theorem and Its Applications: a Computability-Theoretic Perspective: Volume: 293 Number: 1457 (Memoirs of the American Mathematical Society)

Inhaltsangabe

Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.

Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.

Our advance here stems from a careful analysis of the Halpern–Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.

We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Paul-Elliot Angles D'Auriac, Universite Claude Bernard Lyon 1, France.

Peter A. Cholak, University of Notre Dame, Indiana.

Damir D. Dzhafarov, University of Connecticut, Storrs, Connecticut.

Benoit Monin, Laboratoire d'Algorithmique, Complexite et Logique (LACL), Paris, France.

Ludovic Patey, Universite Claude Bernard Lyon 1, France.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 16,92 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 2,29 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Milliken's Tree Theorem and Its Applications: a...

Foto des Verkäufers

Paul-Elliot Angles D'Auriac, Peter A. Cholak, Damir D. Dzhafarov, Benoit Monin, Ludovic Patey
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.Our advance here stems from a careful analysis of the Halpern-Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure. Bestandsnummer des Verkäufers LU-9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 87,62
Währung umrechnen
Versand: EUR 2,29
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'Auriac, Paul-Elliot Angles/ Cholak, Peter A./ Dzhafarov, Damir D./ Monin, Benoit/ Patey, Ludovic
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 118 pages. In Stock. Bestandsnummer des Verkäufers __1470467313

Verkäufer kontaktieren

Neu kaufen

EUR 81,58
Währung umrechnen
Versand: EUR 11,45
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul-Elliot Angles D'Auriac, Peter A. Cholak, Damir D. Dzhafarov, Benoit Monin, Ludovic Patey
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Paperback

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Milliken's tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey's theorem and its many variants and consequences. In this sense, Milliken's tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive.Motivated by a question of Dobrinen, we initiate the study of Milliken's tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey's theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken's tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-La¨uchli theorem, which is a key ingredient.Our advance here stems from a careful analysis of the Halpern-Läuchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken's tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken's tree theorem. This enables us to build solutions to the full Milliken's tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken's tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken's tree theorem.We apply our analysis also to several well-known applications of Milliken's tree theorem, namely Devlin's theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey's theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken's tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker's notion of big Ramsey structure. Bestandsnummer des Verkäufers LU-9781470467319

Verkäufer kontaktieren

Neu kaufen

EUR 94,10
Währung umrechnen
Versand: EUR 2,29
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'auriac, Paul-elliot Angles; Cholak, Peter A.; Dzhafarov, Damir D.; Monin, Benoit
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 47506218-n

Verkäufer kontaktieren

Neu kaufen

EUR 87,61
Währung umrechnen
Versand: EUR 17,17
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'auriac, Paul-elliot Angles; Cholak, Peter A.; Dzhafarov, Damir D.; Monin, Benoit
ISBN 10: 1470467313 ISBN 13: 9781470467319
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 47506218-n

Verkäufer kontaktieren

Neu kaufen

EUR 91,78
Währung umrechnen
Versand: EUR 16,92
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'auriac, Paul-elliot Angles; Cholak, Peter A.; Dzhafarov, Damir D.; Monin, Benoit
ISBN 10: 1470467313 ISBN 13: 9781470467319
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47506218

Verkäufer kontaktieren

Gebraucht kaufen

EUR 103,76
Währung umrechnen
Versand: EUR 16,92
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D'auriac, Paul-elliot Angles; Cholak, Peter A.; Dzhafarov, Damir D.; Monin, Benoit
ISBN 10: 1470467313 ISBN 13: 9781470467319
Gebraucht Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47506218

Verkäufer kontaktieren

Gebraucht kaufen

EUR 104,75
Währung umrechnen
Versand: EUR 17,17
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb