We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.
Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Tobias Rossmann, University of Galway, Ireland.
Christopher Voll, Universitat Bielefeld, Germany.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 16,97 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 2,32 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs. Bestandsnummer des Verkäufers LU-9781470468682
Anzahl: 7 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs. Bestandsnummer des Verkäufers LU-9781470468682
Anzahl: 7 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 120 pages. In Stock. Bestandsnummer des Verkäufers __1470468689
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781470468682
Anzahl: 14 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 47521589-n
Anzahl: 14 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 118. Bestandsnummer des Verkäufers B9781470468682
Anzahl: 14 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47521589-n
Anzahl: 9 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47521589
Anzahl: 9 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47521589
Anzahl: 14 verfügbar