It is a longstanding unsolved problem to characterize the optimal feedbacks for general SLQs (i.e., stochastic linear quadratic control problems) with random coefficients in infinite dimensions; while the same problem but in finite dimensions was just addressed very recently. This paper is devoted to giving a solution to this problem under some assumptions which can be verified for interesting concrete models. More precisely, under these assumptions, we establish the equivalence between the existence of optimal feedback operator for infinite dimensional SLQs and the solvability of the corresponding operator-valued, backward stochastic Riccati equations. A key contribution of this work is to introduce a suitable notion of solutions (i.e., transposition solutions to the aforementioned Riccati equations), which plays a crucial role in both the statement and the proof of our main results.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Qi Lu, Sichuan University, Chengdu, People's Republic of China.
Xu Zhang, Sichuan University, Chengdu, People's Republic of China.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,79 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FW-9781470468750
Anzahl: 11 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 107 pages. In Stock. Bestandsnummer des Verkäufers __1470468751
Anzahl: 2 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. It is a longstanding unsolved problem to characterize the optimal feedbacks for general SLQs (i.e., stochastic linear quadratic control problems) with random coefficients in infinite dimensions; while the same problem but in finite dimensions was just addressed very recently. This paper is devoted to giving a solution to this problem under some assumptions which can be verified for interesting concrete models. More precisely, under these assumptions, we establish the equivalence between the existence of optimal feedback operator for infinite dimensional SLQs and the solvability of the corresponding operator-valued, backward stochastic Riccati equations. A key contribution of this work is to introduce a suitable notion of solutions (i.e., transposition solutions to the aforementioned Riccati equations), which plays a crucial role in both the statement and the proof of our main results. Bestandsnummer des Verkäufers LU-9781470468750
Anzahl: 6 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. New copy - Usually dispatched within 4 working days. 157. Bestandsnummer des Verkäufers B9781470468750
Anzahl: 11 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. It is a longstanding unsolved problem to characterize the optimal feedbacks for general SLQs (i.e., stochastic linear quadratic control problems) with random coefficients in infinite dimensions; while the same problem but in finite dimensions was just addressed very recently. This paper is devoted to giving a solution to this problem under some assumptions which can be verified for interesting concrete models. More precisely, under these assumptions, we establish the equivalence between the existence of optimal feedback operator for infinite dimensional SLQs and the solvability of the corresponding operator-valued, backward stochastic Riccati equations. A key contribution of this work is to introduce a suitable notion of solutions (i.e., transposition solutions to the aforementioned Riccati equations), which plays a crucial role in both the statement and the proof of our main results. Bestandsnummer des Verkäufers LU-9781470468750
Anzahl: 6 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
paperback. Zustand: New. New. book. Bestandsnummer des Verkäufers ERICA82914704687516
Anzahl: 1 verfügbar