We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,02 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,16 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 249. Bestandsnummer des Verkäufers C9781483902326
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers I-9781483902326
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 37414867
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 37414867-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 37414867
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 37414867-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781483902326
Anzahl: 1 verfügbar
Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich
Paperback. Zustand: new. Paperback. We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781483902326
Anzahl: 1 verfügbar