Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pramod Singh is currently a Manager (Data Science) at Publicis Sapient and working as data science lead for a project with Mercedes Benz. He has spent the last nine years working on multiple Data projects at SapientRazorfish, Infosys & Tally and has used traditional to advanced machine learning and deep learning techniques in multiple projects using R, Python, Spark and Tensorflow. Pramod has also been a regular speaker at major conferences in India and abroad and is currently authoring a couple of books on Deep Learning and AI techniques. He regularly conducts Data Science meetups at SapientRazorfish and presents webinars on Machine Learning and Artificial Intelligence. He lives in Bangalore with his wife and 2-year-old son. In his spare time, he enjoys coding, reading and watching football.
Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,14 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 10,72 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Learn Pyspark: Build Python-Based Machine Learning and Deep Learning Models 0.72. Book. Bestandsnummer des Verkäufers BBS-9781484249604
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 288912956
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 35695826-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 35695826
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch. Bestandsnummer des Verkäufers 9781484249604
Anzahl: 2 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Leverage machine and deep learning models to build applications on real-time datausing PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms.You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.What You'll LearnDevelop pipelines for streaming data processing using PySparkBuild Machine Learning & Deep Learning models using PySpark latest offeringsUse graph analytics using PySparkCreate Sequence Embeddings from Text dataWho This Book is ForData Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data. 228 pp. Englisch. Bestandsnummer des Verkäufers 9781484249604
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781484249604_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Leverage machine and deep learning models to build applications on real-time datausing PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms.You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.What You'll LearnDevelop pipelines for streaming data processing using PySparkBuild Machine Learning & Deep Learning models using PySpark latest offeringsUse graph analytics using PySparkCreate Sequence Embeddings from Text dataWho This Book is ForData Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data. Bestandsnummer des Verkäufers 9781484249604
Anzahl: 1 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 184. Bestandsnummer des Verkäufers C9781484249604
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 35695826
Anzahl: Mehr als 20 verfügbar