Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pramod Singh is currently a Manager (Data Science) at Publicis Sapient and working as data science lead for a project with Mercedes Benz. He has spent the last nine years working on multiple Data projects at SapientRazorfish, Infosys & Tally and has used traditional to advanced machine learning and deep learning techniques in multiple projects using R, Python, Spark and Tensorflow. Pramod has also been a regular speaker at major conferences in India and abroad and is currently authoring a couple of books on Deep Learning and AI techniques. He regularly conducts Data Science meetups at SapientRazorfish and presents webinars on Machine Learning and Artificial Intelligence. He lives in Bangalore with his wife and 2-year-old son. In his spare time, he enjoys coding, reading and watching football.
Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,56 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 10,65 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 53179025-6
Anzahl: 1 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Learn Pyspark: Build Python-Based Machine Learning and Deep Learning Models 0.72. Book. Bestandsnummer des Verkäufers BBS-9781484249604
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 288912956
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 35695826-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.What You'll LearnDevelop pipelines for streaming data processing using PySpark Build Machine Learning and Deep Learning models using PySpark latest offeringsUse graph analytics using PySpark Create Sequence Embeddings from Text data Who This Book is For Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data. Bestandsnummer des Verkäufers LU-9781484249604
Anzahl: 8 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 35695826
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. 2019. 1st ed. paperback. . . . . . Bestandsnummer des Verkäufers V9781484249604
Anzahl: 15 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781484249604_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.What You'll LearnDevelop pipelines for streaming data processing using PySpark Build Machine Learning and Deep Learning models using PySpark latest offeringsUse graph analytics using PySpark Create Sequence Embeddings from Text data Who This Book is For Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data. Bestandsnummer des Verkäufers LU-9781484249604
Anzahl: 8 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch. Bestandsnummer des Verkäufers 9781484249604
Anzahl: 2 verfügbar