Verwandte Artikel zu Hyperparameter Optimization in Machine Learning: Make...

Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient - Softcover

 
9781484265789: Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient

Inhaltsangabe

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.

Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. 

What You Will Learn

  • Discover how changes in hyperparameters affect the model's performance.
  • Apply different hyperparameter tuning algorithms to data science problems
  • Work with Bayesian optimization methods to create efficient machine learning and deep learning models
  • Distribute hyperparameter optimization using a cluster of machines
  • Approach automated machine learning using hyperparameter optimization

Who This Book Is For 

Professionals and students working with machine learning.





Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Tanay is a deep learning engineer and researcher, who graduated in 2019 in Bachelor of Technology from SMVDU, J&K. He is currently working at Curl Hg on SARA, an OCR platform. He is also advisor to Witooth Dental Services and Technologies. He started his career at MateLabs working on an AutoML Platform, Mateverse. He has worked extensively on hyperparameter optimization. He has also delivered talks on hyperparameter optimization at conferences including PyData, Delhi and PyCon, India. 

Von der hinteren Coverseite

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.

Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. 

You will:

  • Discover how changes in hyperparameters affect the model’s performance.
  • Apply different hyperparameter tuning algorithms to data science problems
  • Work with Bayesian optimization methods to create efficient machine learning and deep learning models
  • Distribute hyperparameter optimization using a cluster of machines
  • Approach automated machine learning using hyperparameter optimization

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Gut/Very good: Buch bzw. Schutzumschlag...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781484265802: Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient

Vorgestellte Ausgabe

ISBN 10:  1484265807 ISBN 13:  9781484265802
Softcover

Suchergebnisse für Hyperparameter Optimization in Machine Learning: Make...

Internationale Ausgabe
Internationale Ausgabe

Tanay Agrawal
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Softcover
Internationale Ausgabe

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-209502

Verkäufer kontaktieren

Neu kaufen

EUR 23,58
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agrawal, Tanay
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Gebraucht Softcover

Anbieter: medimops, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Bestandsnummer des Verkäufers M01484265785-V

Verkäufer kontaktieren

Gebraucht kaufen

EUR 37,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Agrawal, Tanay
Verlag: Apress 12/16/2020, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient 0.6. Book. Bestandsnummer des Verkäufers BBS-9781484265789

Verkäufer kontaktieren

Neu kaufen

EUR 35,62
Währung umrechnen
Versand: EUR 10,65
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Tanay Agrawal
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers state-of-the-art techniques for hyperparameter tuningCovers implementation of advanced Bayesian optimization techniques on machine learning algorithms to complex deep learning frameworksExplains distr. Bestandsnummer des Verkäufers 403911151

Verkäufer kontaktieren

Neu kaufen

EUR 48,37
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agrawal, Tanay
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781484265789

Verkäufer kontaktieren

Neu kaufen

EUR 40,37
Währung umrechnen
Versand: EUR 8,52
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Agrawal, Tanay
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 42444222-n

Verkäufer kontaktieren

Neu kaufen

EUR 33,30
Währung umrechnen
Versand: EUR 17,03
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Agrawal, Tanay
Verlag: Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 42444222

Verkäufer kontaktieren

Gebraucht kaufen

EUR 38,59
Währung umrechnen
Versand: EUR 17,03
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Tanay Agrawal
Verlag: Apress Nov 2020, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning. 188 pp. Englisch. Bestandsnummer des Verkäufers 9781484265789

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Tanay Agrawal
Verlag: Apress, Apress Nov 2020, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next yoüll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, yoüll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model¿s performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 188 pp. Englisch. Bestandsnummer des Verkäufers 9781484265789

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Tanay Agrawal
Verlag: Apress, Apress, 2020
ISBN 10: 1484265785 ISBN 13: 9781484265789
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is ForProfessionals and students working with machine learning. Bestandsnummer des Verkäufers 9781484265789

Verkäufer kontaktieren

Neu kaufen

EUR 59,71
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 8 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen