Verwandte Artikel zu Computer Vision with Maker Tech: Detecting People With...

Computer Vision with Maker Tech: Detecting People With a Raspberry Pi, a Thermal Camera, and Machine Learning - Softcover

 
9781484268209: Computer Vision with Maker Tech: Detecting People With a Raspberry Pi, a Thermal Camera, and Machine Learning

Inhaltsangabe

Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.

You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.

With those concepts covered, you'll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice. 

What You'll Learn

  • Develop a voice assistant to control your IoT devices
  • Implement Computer Vision to detect changes in an environment
  • Go beyond simple projects to also gain a grounding machine learning in general
  • See how IoT can become "smarter" with the inception of machine learning techniques
  • Build machine learning models using TensorFlow and OpenCV

Who This Book Is For

Makers and amateur programmers interested in taking simple IoT projects to the next level using TensorFlow and machine learning. Also more advanced programmers wanting an easy on ramp to machine learning concepts.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Fabio Manganiello is a 15 year veteran in machine learning and dynamic programming techniques. In his career, he has worked on natural language processing with a focus on automatically labelling and generating definitions for unknown terms in big corpora of unstructured documents; on an early voice assistant (Voxifera) developed back in 2008; on machine learning techniques for clustering, inferring correlations, and preventing the next step in complex attacks by analysing the alerts of an intrusion detection system; and several libraries to make model design and training easier. In the recent years, he has combined his passion for machine learning with IoT and distributed systems. From self-driving robots, to people detection, to anomaly detection, to data forecasting, he likes to combine the flexibility and affordability of tools such as RaspberryPi, Arduino, ESP8266, MQTT, and cheap sensors with the power of machine learning models. He's an active IEEE member and open sourceenthusiast, and has contributed to hundreds of open source projects over the years.

Von der hinteren Coverseite

Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.

You ll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You ll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.

With those concepts covered, you ll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, you ll put things together and work through a couple of practical examples. You ll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you ll add a voice assistant that uses your own model to recognize your voice. 

You will:

  • Develop a voice assistant to control your IoT devices
  • Implement Computer Vision to detect changes in an environment
  • Go beyond simple projects to also gain a grounding machine learning in general
  • See how IoT can become "smarter" with the inception of machine learning techniques
  • Build machine learning models using TensorFlow and OpenCV

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,08 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Computer Vision with Maker Tech: Detecting People With...

Foto des Verkäufers

Fabio Manganiello
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Harness the power of machine learning for IoT applicationsBuild a Computer Vision system with low-cost Maker hardwareGain a foothold in the advancing realm of machine learningFabio Manganiello is a 15 year veteran in machine learnin. Bestandsnummer des Verkäufers 437482610

Verkäufer kontaktieren

Neu kaufen

EUR 52,37
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Manganiello, Fabio
Verlag: Apress 2/25/2021, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Computer Vision with Maker Tech: Detecting People with a Raspberry Pi, a Thermal Camera, and Machine Learning 0.78. Book. Bestandsnummer des Verkäufers BBS-9781484268209

Verkäufer kontaktieren

Neu kaufen

EUR 41,97
Währung umrechnen
Versand: EUR 10,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Manganiello, Fabio
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 43097736-n

Verkäufer kontaktieren

Neu kaufen

EUR 39,64
Währung umrechnen
Versand: EUR 17,08
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Manganiello, Fabio
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43097736

Verkäufer kontaktieren

Gebraucht kaufen

EUR 46,72
Währung umrechnen
Versand: EUR 17,08
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Fabio Manganiello
Verlag: Apress, Apress Feb 2021, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.Yoüll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. Yoüll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.With those concepts covered, yoüll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, yoüll put things together and work through a couple of practical examples. Yoüll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And yoüll add a voice assistant that uses your own model to recognize your voice.What You'll LearnDevelop a voice assistant to control your IoT devicesImplement Computer Vision to detect changes in an environmentGo beyond simple projects to also gain a grounding machine learning in generalSee how IoT can become 'smarter' with the inception of machine learning techniquesBuild machine learning models using TensorFlow and OpenCVAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 248 pp. Englisch. Bestandsnummer des Verkäufers 9781484268209

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Fabio Manganiello
Verlag: Apress Feb 2021, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.With those concepts covered, you'll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc.Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice.What You'll LearnDevelop a voice assistant to control your IoT devicesImplement Computer Vision to detect changes in an environmentGo beyond simple projects to also gain a grounding machine learning in generalSee how IoT can become 'smarter' with the inception of machine learning techniquesBuild machine learning models using TensorFlow and OpenCVWho This Book Is ForMakers and amateur programmers interested in taking simple IoT projects to the next level using TensorFlow and machine learning. Also more advanced programmers wanting an easy on ramp to machine learning concepts. 248 pp. Englisch. Bestandsnummer des Verkäufers 9781484268209

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Fabio Manganiello
Verlag: Apress, Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.With those concepts covered, you'll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc.Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice.What You'll LearnDevelop a voice assistant to control your IoT devicesImplement Computer Vision to detect changes in an environmentGo beyond simple projects to also gain a grounding machine learning in generalSee how IoT can become 'smarter' with the inception of machine learning techniquesBuild machine learning models using TensorFlow and OpenCVWho This Book Is ForMakers and amateur programmers interested in taking simple IoT projects to the next level using TensorFlow and machine learning. Also more advanced programmers wanting an easy on ramp to machine learning concepts. Bestandsnummer des Verkäufers 9781484268209

Verkäufer kontaktieren

Neu kaufen

EUR 68,82
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Manganiello, Fabio
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Gebraucht Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43097736

Verkäufer kontaktieren

Gebraucht kaufen

EUR 52,77
Währung umrechnen
Versand: EUR 17,41
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Manganiello, Fabio
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 43097736-n

Verkäufer kontaktieren

Neu kaufen

EUR 53,34
Währung umrechnen
Versand: EUR 17,41
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Manganiello, Fabio
Verlag: Apress, 2021
ISBN 10: 1484268202 ISBN 13: 9781484268209
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781484268209_new

Verkäufer kontaktieren

Neu kaufen

EUR 66,96
Währung umrechnen
Versand: EUR 5,78
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 6 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen