Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pradeepta Mishra is the Head of AI (Leni) at L&T Infotech (LTI), leading a large group of data scientists, computational linguistics experts, machine learning and deep learning experts in building next generation product, ‘Leni’ world’s first virtual data scientist. He was awarded as "India's Top - 40Under40DataScientists" by Analytics India Magazine. He is an author of 4 books, his first book has been recommended in HSLS center at the University of Pittsburgh, PA, USA. His latest book #PytorchRecipes was published by Apress. He has delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions and community arranged forums.
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030152709
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 43749588-n
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43749588
Anzahl: 4 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781484271575
Anzahl: Mehr als 20 verfügbar
Anbieter: Brook Bookstore, Milano, MI, Italien
Zustand: new. Bestandsnummer des Verkäufers 3ZOZIRA4ZL
Anzahl: 10 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decisionFurther, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, youwill be introduced to model explainability for unstructured data, classification problems, and natural language processingrelated tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.What You'll LearnReview the different ways of making an AI model interpretable and explainableExamine the biasness and good ethical practices of AI modelsQuantify, visualize, and estimate reliability of AI modelsDesign frameworks to unbox the black-box modelsAssess the fairness of AI modelsUnderstand the building blocks of trust in AI modelsIncrease the level of AI adoptionWho This Book Is ForAI engineers, data scientists, and software developers involved in driving AI projects/ AI products. Intermediate-Advanced Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781484271575
Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien
Zustand: new. Bestandsnummer des Verkäufers 3ZOZIRA4ZL
Anzahl: 10 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers S0-9781484271575
Anzahl: 10 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Practical Explainable AI Using Python: Artificial Intelligence Model Explanations Using Python-based Libraries, Extensions, and Frameworks. Book. Bestandsnummer des Verkäufers BBS-9781484271575
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 43749588-n
Anzahl: 4 verfügbar