Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.
This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.
All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be opened directly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally.
You will:
• Understand the fundamental concepts of how neural networks work
• Learn the fundamental ideas behind autoencoders and generative adversarial networks• Be able to try all the examples with complete code examples that you can expand for your own projects
• Have available a complete online companion book with examples and tutorials.
This book is for:
Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Umberto Michelucci is the founder and the chief AI scientist of TOELT – Advanced AI LAB LLC. He’s an expert in numerical simulation, statistics, data science, and machine learning. He has 15 years of practical experience in the fields of data warehouse, data science, and machine learning. His first book, Applied Deep Learning―A Case-Based Approach to Understanding Deep Neural Networks, was published in 2018. His second book, Convolutional and Recurrent Neural Networks Theory and Applications was published in 2019. He publishes his research regularly and gives lectures on machine learning and statistics at various universities. He holds a PhD in machine learning, and he is also a Google Developer Expert in Machine Learning based in Switzerland.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 16,98 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 10,62 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Applied Deep Learning with Tensorflow 2: Learn to Implement Advanced Deep Learning Techniques with Python 1.56. Book. Bestandsnummer des Verkäufers BBS-9781484280195
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your . Bestandsnummer des Verkäufers 537434268
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781484280195
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44347078-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18394721694
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44347078
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 2nd ed. edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26394721684
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.All the code presented in the book will be available in the form of Jupyter not Elektronisches Buch which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be openeddirectly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally.You will:-Understand the fundamental concepts of how neural networks work-Learn the fundamental ideas behind autoencoders and generative adversarial networks-Be able to try all the examples with complete code examples that you can expand for your own projects-Have available a complete online companion book with examples and tutorials.This book is for:Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming. 408 pp. Englisch. Bestandsnummer des Verkäufers 9781484280195
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.All the code presented in the book will be available in the form of Jupyter not Elektronisches Buch which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be openeddirectly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally.You will:¿ Understand the fundamental concepts of how neural networks work¿ Learn the fundamental ideas behind autoencoders and generative adversarial networks¿ Be able to try all the examples with complete code examples that you can expand for your own projects¿ Have available a complete online companion book with examples and tutorials.This book is for:Readers with an intermediate understanding of machine learning, linear algebra, calculus, and basic Python programming.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 408 pp. Englisch. Bestandsnummer des Verkäufers 9781484280195
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781484280195_new
Anzahl: Mehr als 20 verfügbar