Verwandte Artikel zu Applied Recommender Systems with Python: Build Recommender...

Applied Recommender Systems with Python: Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques - Softcover

 
9781484289532: Applied Recommender Systems with Python: Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques

Inhaltsangabe

This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.

You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.

By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.

What You Will Learn

  • Understand and implement different recommender systems techniques with Python
  • Employ popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorization 
  • Build hybrid recommender systems that incorporate both content-based and collaborative filtering
  • Leverage machine learning, NLP, and deep learning for building recommender systems


Who This Book Is For
Data scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Akshay R Kulkarni is an AI and machine learning evangelist and a thought leader. He has consulted several Fortune 500 and global enterprises to drive AI and data science-led strategic transformations. He is a Google developer, Author, and a regular speaker at major AI and data science conferences including Strata, O’Reilly AI Conf, and GIDS. He is a visiting faculty member for some of the top graduate institutes in India. In 2019, he has been also featured as one of the top 40 under 40 Data Scientists in India. In his spare time, he enjoys reading, writing, coding, and helping aspiring data scientists. He lives in Bangalore with his family.

Adarsha Shivananda is Data science and MLOps Leader. He is working on creating world-class MLOps capabilities to ensure continuous value delivery from AI. He aims to build a pool of exceptional data scientists within and outside of the organization to solve problems through training programs, and always wants to stay ahead of the curve. He has worked extensively in the pharma, healthcare, CPG, retail, and marketing domains. He lives in Bangalore and loves to read and teach data science.

Anoosh Kulkarni is a data scientist and an AI consultant. He has worked with global clients across multiple domains and helped them solve their business problems using machine learning (ML), natural language processing (NLP), and deep learning. Anoosh is passionate about guiding and mentoring people in their data science journey. He leads data science/machine learning meet-ups and helps aspiring data scientists navigate their careers. He also conducts ML/AI workshops at universities and is actively involved in conducting webinars, talks, and sessions on AI and data science. He lives in Bangalore with his family.

V Adithya Krishnan is a data scientist and ML Ops Engineer. He has worked with various global clients across multiple domains and helped them to solve their business problems extensively using advanced Machine learning (ML) applications. He has experience across multiple fields of AI-ML, including, Time-series forecasting, Deep Learning, NLP, ML Operations, Image processing, and data analytics. Presently, he is developing a state-of-the-art value observability suite for models in production, which includes continuous model and data monitoring along with the business value realized. He also published a paper at an IEEE conference, “Deep Learning Based Approach for Range Estimation”, written in collaboration with the DRDO. He lives in Chennai with his family.

Von der hinteren Coverseite

This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.

You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.

By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.

You will:

  • Understand and implement different recommender systems techniques with Python
  • Employ popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorization 
  • Build hybrid recommender systems that incorporate both content-based and collaborative filtering
  • Leverage machine learning, NLP, and deep learning for building recommender systems

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagApress
  • Erscheinungsdatum2022
  • ISBN 10 1484289536
  • ISBN 13 9781484289532
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten264
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,55 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781484289556: Applied Recommender Systems with Python: Build Recommender Systems with Deep Learning, NLP and Graph-Based Techniques

Vorgestellte Ausgabe

ISBN 10:  1484289552 ISBN 13:  9781484289556
Verlag: Apress, 2022
Softcover

Suchergebnisse für Applied Recommender Systems with Python: Build Recommender...

Foto des Verkäufers

Kulkarni, Akshay|Shivananda, Adarsha|Kulkarni, Anoosh|Krishnan, V Adithya
Verlag: Springer, Berlin|Apress, 2023
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.You ll start by learning basic concepts of recommende. Bestandsnummer des Verkäufers 706735402

Verkäufer kontaktieren

Neu kaufen

EUR 40,73
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Kulkarni, Akshay
Verlag: Apress 11/22/2022, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Applied Recommender Systems with Python: Build Recommender Systems with Deep Learning, Nlp and Graph-Based Techniques 1.02. Book. Bestandsnummer des Verkäufers BBS-9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 30,85
Währung umrechnen
Versand: EUR 10,98
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Akshay Kulkarni
Verlag: APress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Paperback / softback

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. New copy - Usually dispatched within 2 working days. 209. Bestandsnummer des Verkäufers B9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 37,89
Währung umrechnen
Versand: EUR 5,12
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kulkarni, Akshay; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Verlag: Apress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 34,37
Währung umrechnen
Versand: EUR 8,78
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Akshay Kulkarni
Verlag: APress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Paperback / softback
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 37,90
Währung umrechnen
Versand: EUR 6,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Kulkarni, Akshay; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Verlag: Apress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 45052857-n

Verkäufer kontaktieren

Neu kaufen

EUR 28,45
Währung umrechnen
Versand: EUR 17,55
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Akshay Kulkarni
Verlag: Apress Nov 2022, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.What You Will LearnUnderstand and implement different recommender systems techniques with PythonEmploy popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorizationBuild hybrid recommender systems that incorporate both content-based and collaborative filteringLeverage machine learning, NLP, and deep learning for building recommender systemsWho This Book Is ForData scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems. 264 pp. Englisch. Bestandsnummer des Verkäufers 9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Akshay Kulkarni
Verlag: Apress, Apress Nov 2022, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 264 pp. Englisch. Bestandsnummer des Verkäufers 9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Kulkarni, Akshay; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Verlag: Apress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45052857

Verkäufer kontaktieren

Gebraucht kaufen

EUR 31,02
Währung umrechnen
Versand: EUR 17,55
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Akshay Kulkarni
Verlag: Apress, Apress, 2022
ISBN 10: 1484289536 ISBN 13: 9781484289532
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today.You'll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations.By the end of this book, you will understand and be able to build recommender systems with various tools and techniques with machine learning, deep learning, and graph-based algorithms.What You Will LearnUnderstand and implement different recommender systems techniques with PythonEmploy popular methods like content- and knowledge-based, collaborative filtering, market basket analysis, and matrix factorizationBuild hybrid recommender systems that incorporate both content-based and collaborative filteringLeverage machine learning, NLP, and deep learning for building recommender systemsWho This Book Is ForData scientists, machine learning engineers, and Python programmers interested in building and implementing recommender systems to solve problems. Bestandsnummer des Verkäufers 9781484289532

Verkäufer kontaktieren

Neu kaufen

EUR 50,60
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 8 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen