Verwandte Artikel zu MLOps Lifecycle Toolkit: A Software Engineering Roadmap...

MLOps Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems - Softcover

 
9781484296431: MLOps Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems

Inhaltsangabe

This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.

MLOps Lifecycle Toolkit walks you through the principles of software engineering, assuming no prior experience. It addresses the perennial "why" of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you'll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter notebooks to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You'll gain insight into the technical and architectural decisions you're likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps "toolkit" that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.

After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.

What You Will Learn

  • Understand the principles of software engineering and MLOps
  • Design an end-to-endmachine learning system
  • Balance technical decisions and architectural trade-offs
  • Gain insight into the fundamental problems unique to each industry and how to solve them

Who This Book Is For

Data scientists, machine learning engineers, and software professionals.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,77 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781484296417: MLOps Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems

Vorgestellte Ausgabe

ISBN 10:  1484296419 ISBN 13:  9781484296417
Verlag: Apress, 2023
Softcover

Suchergebnisse für MLOps Lifecycle Toolkit: A Software Engineering Roadmap...

Beispielbild für diese ISBN

Sorvisto, Dayne
Verlag: Apress, 2023
ISBN 10: 1484296435 ISBN 13: 9781484296431
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781484296431_new

Verkäufer kontaktieren

Neu kaufen

EUR 54,45
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb