Verwandte Artikel zu Trust-based Collective View Prediction

Trust-based Collective View Prediction - Softcover

 
9781489992000: Trust-based Collective View Prediction

Inhaltsangabe

Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users’ past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users’ trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies.

The book consists of two main parts – a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users’ data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors.

The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners tointegrate these techniques into new applications.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users’ past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users’ trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies.

The book consists of two main parts – a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users’ data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors.

The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners to integrate these techniques into new applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 2,25 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 7,66 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Trust-based Collective View Prediction

Beispielbild für diese ISBN

Luo, Tiejian; Chen, Su; Xu, Guandong; Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781489992000

Verkäufer kontaktieren

Neu kaufen

EUR 96,14
Währung umrechnen
Versand: EUR 7,66
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Luo, Tiejian; Chen, Su; Xu, Guandong; Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 24386258-n

Verkäufer kontaktieren

Neu kaufen

EUR 101,70
Währung umrechnen
Versand: EUR 2,25
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Luo, Tiejian; Chen, Su; Xu, Guandong; Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030159482

Verkäufer kontaktieren

Neu kaufen

EUR 101,95
Währung umrechnen
Versand: EUR 3,40
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Luo, Tiejian
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover
Print-on-Demand

Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 0ba634cd7ffb892b53c34d64dc5ea6ec

Verkäufer kontaktieren

Neu kaufen

EUR 86,24
Währung umrechnen
Versand: EUR 20,00
Von Italien nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tiejian Luo
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Paperback

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies. The book consists of two main parts a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors. The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners tointegrate these techniques into new applications. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781489992000

Verkäufer kontaktieren

Neu kaufen

EUR 121,22
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Luo, Tiejian; Chen, Su; Xu, Guandong; Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 24386258

Verkäufer kontaktieren

Gebraucht kaufen

EUR 120,74
Währung umrechnen
Versand: EUR 2,25
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Luo, Tiejian; Chen, Su; Xu, Guandong; Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781489992000_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,18
Währung umrechnen
Versand: EUR 13,74
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Tiejian Luo
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users' trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies. The book consists of two main parts - a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users' data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors. The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners to integrate these techniques into new applications. 160 pp. Englisch. Bestandsnummer des Verkäufers 9781489992000

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Luo, Tiejian, Chen, Su, Xu, Guandong, Zhou, Jia
Verlag: Springer, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover

Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 2015. Paperback. . . . . . Bestandsnummer des Verkäufers V9781489992000

Verkäufer kontaktieren

Neu kaufen

EUR 127,10
Währung umrechnen
Versand: EUR 10,50
Von Irland nach USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

Tiejian Luo|Su Chen|Guandong Xu|Jia Zhou
Verlag: Springer New York, 2015
ISBN 10: 1489992006 ISBN 13: 9781489992000
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Outlines recent theoretical advances and algorithmic innovations conducted in trust-based collective view predictionAnalyzes the existing vulnerabilities of the content-based recommendation and collaborative filtering techniques, and proposes new,. Bestandsnummer des Verkäufers 447930288

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen