Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.
You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Michael Brzustowicz is a physicist turned data scientist. After a PhD from Indiana University, Michael spent his post doctoral years at Stanford University where he shot high powered Xrays at tiny molecules. Jumping ship from academia, he worked at many startups (including his own) and has been pioneering big data techniques all the way. Michael specializes in building distributed data systems and extracting knowledge from massive data. He spends most of his time writing customized, multithreaded code for statistical modeling and machine learning approaches to everyday big data problems. Michael now teaches Big Data, parttime, at the University of San Francisco.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: St Vincent de Paul of Lane County, Eugene, OR, USA
Zustand: Acceptable. PLEASE NOTE: FORMER LIBRARY BOOK. IT MAY HAVE IDENTIFYING STAMPS, MARKS, STICKERS, ETC. Former Library book. Paperback 100% of proceeds go to charity! Acceptable reading copy with obvious signs of use, wear, and/or cosmetic issues. Item is complete and remains readable despite notable condition issues. Bestandsnummer des Verkäufers D-03-5384
Anzahl: 1 verfügbar
Anbieter: HPB-Red, Dallas, TX, USA
Paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_303333404
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Bestandsnummer des Verkäufers G1491934115I4N00
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781491934111
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 24688464-n
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 24688464
Anzahl: 1 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Data Science with Java: Practical Methods for Scientists and Engineers. Book. Bestandsnummer des Verkäufers BBS-9781491934111
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today's data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java.You'll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you'll find code examples you can use in your applications.Examine methods for obtaining, cleaning, and arranging data into its purest formUnderstand the matrix structure that your data should takeLearn basic concepts for testing the origin and validity of dataTransform your data into stable and usable numerical valuesUnderstand supervised and unsupervised learning algorithms, and methods for evaluating their successGet up and running with MapReduce, using customized components suitable for data science algorithms. Bestandsnummer des Verkäufers LU-9781491934111
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 24688464-n
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2716030177442
Anzahl: Mehr als 20 verfügbar