Zu dieser ISBN ist aktuell kein Angebot verfügbar.
Alle Exemplare der Ausgabe mit dieser ISBN anzeigen:Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process., Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub., Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Wes McKinney is the main author of pandas, the popular open sourcePython library for data analysis. Wes is an active speaker andparticipant in the Python and open source communities. He worked as a quantitative analyst at AQR Capital Management and Python consultant before founding DataPad, a data analytics company, in 2013. He graduated from MIT with an S.B. in Mathematics.
Reseña del editor:Looking for complete instructions on manipulating, processing, cleaning, and crunching structured data in Python? The second edition of this hands-on guide-updated for Python 3.5 and Pandas 1.0-is packed with practical cases studies that show you how to effectively solve a broad set of data analysis problems, using Python libraries such as NumPy, pandas, matplotlib, and IPython. Written by Wes McKinney, the main author of the pandas library, Python for Data Analysis also serves as a practical, modern introduction to scientific computing in Python for data-intensive applications. It's ideal for analysts new to Python and for Python programmers new to scientific computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Versand:
Gratis
Innerhalb USA
Buchbeschreibung O'Reilly Media, 2017. Paperback. Zustand: new. Bestandsnummer des Verkäufers 9781491957660
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 27914916-n
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung O'Reilly Media, 2017. Paperback. Zustand: New. Bestandsnummer des Verkäufers DADAX1491957662
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung O'Reilly Media. Zustand: new. 2. Book is in NEW condition. Satisfaction Guaranteed! Fast Customer Service!!. Bestandsnummer des Verkäufers MBSN1491957662
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Oand#8242;Reilly, 2017. PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781491957660
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung O'Reilly Media, Inc, USA, United States, 2017. Paperback. Zustand: New. 2nd ed. Language: English. Brand new Book. Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples. Bestandsnummer des Verkäufers BTA9781491957660
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. Bestandsnummer des Verkäufers 27914916-n
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung O'Reilly Media. Zustand: New. Brand New Direct from the Publisher! Not overstocks or marked up remainders! Ships in a sturdy cardboard container with tracking!|VCF. Bestandsnummer des Verkäufers OTF-S-9781491957660
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung Zustand: New. book. Bestandsnummer des Verkäufers ria9781491957660_new
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren
Buchbeschreibung O'Reilly Media, 2017. PaperBack. Zustand: New. Bestandsnummer des Verkäufers 3153991
Weitere Informationen zu diesem Verkäufer | Verkäufer kontaktieren