Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.
Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.
You'll get the guidance you need to confidently:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Aileen has worked in corporate law, physics research labs, and, most recently, a variety of NYC tech startups. Her interests range from defensive software engineering to UX designs for reducing cognitive load to the interplay between law and technology. Aileen is currently working at an early-stage NYC startup that has something to do with time series data and neural networks. She also serves as chair of the New York City Bar Association's Science and Law committee, which focuses on how the latest developments in science and computing should be regulated and how such developments should inform existing legal practices. In the recent past, Aileen worked at mobile health platform One Drop and on Hillary Clinton's presidential campaign. She is a frequent speaker at machine learning conferences on both technical and sociological subjects. She holds an A.B. from Princeton University and is A.B.D. in Applied Physics at Columbia University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,84 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,66 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: As New. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Bestandsnummer des Verkäufers 1492041653-10-1
Anzahl: 1 verfügbar
Anbieter: Studibuch, Stuttgart, Deutschland
paperback. Zustand: Gut. 497 Seiten; 9781492041658.3 Gewicht in Gramm: 1. Bestandsnummer des Verkäufers 936711
Anzahl: 1 verfügbar
Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
Zustand: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Bestandsnummer des Verkäufers wbs1515264419
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Bestandsnummer des Verkäufers 51490436-6
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781492041658
Anzahl: 6 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781492041658
Anzahl: 7 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Practical Time Series Analysis: Prediction with Statistics and Machine Learning 1.7. Book. Bestandsnummer des Verkäufers BBS-9781492041658
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 34645110-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.You'll get the guidance you need to confidently:Find and wrangle time series dataUndertake exploratory time series data analysisStore temporal dataSimulate time series dataGenerate and select features for a time seriesMeasure errorForecast and classify time series with machine or deep learningEvaluate accuracy and performance. Bestandsnummer des Verkäufers LU-9781492041658
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA United, OSWEGO, IL, USA
Paperback. Zustand: New. Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.You'll get the guidance you need to confidently:Find and wrangle time series dataUndertake exploratory time series data analysisStore temporal dataSimulate time series dataGenerate and select features for a time seriesMeasure errorForecast and classify time series with machine or deep learningEvaluate accuracy and performance. Bestandsnummer des Verkäufers LU-9781492041658
Anzahl: Mehr als 20 verfügbar