With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. Youâ ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Matt runs MetaSnake, a Python and Data Science training and consulting company. He has over 15 years of experience using Python across a breadth of domains: Data Science, BI, Storage, Testing and Automation, Open Source Stack Management, and Search.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: HPB-Red, Dallas, TX, USA
Paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_443924391
Anzahl: 1 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Bestandsnummer des Verkäufers 1492047546-8-1
Anzahl: 1 verfügbar
Anbieter: Evergreen Goodwill, Seattle, WA, USA
paperback. Zustand: Good. Bestandsnummer des Verkäufers mon0000260371
Anzahl: 1 verfügbar
Anbieter: Maxwell's House of Books, La Mesa, CA, USA
Soft cover. Zustand: Very Good. 1st Edition. A crisp, unmarked softcover in very good condition; faint tiny stains to textblock. Bestandsnummer des Verkäufers 060511
Anzahl: 1 verfügbar
Anbieter: Arbor Scout, Ann Arbor, MI, USA
Zustand: New. Bestandsnummer des Verkäufers YD-YKQF-BH8J
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 35450222-n
Anzahl: 6 verfügbar
Anbieter: Lakeside Books, Benton Harbor, MI, USA
Zustand: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Bestandsnummer des Verkäufers OTF-S-9781492047544
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Machine Learning Pocket Reference: Working with Structured Data in Python. Book. Bestandsnummer des Verkäufers BBS-9781492047544
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers WO-9781492047544
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.This pocket reference includes sections that cover:Classification, using the Titanic datasetCleaning data and dealing with missing dataExploratory data analysisCommon preprocessing steps using sample dataSelecting features useful to the modelModel selectionMetrics and classification evaluationRegression examples using k-nearest neighbor, decision trees, boosting, and moreMetrics for regression evaluationClusteringDimensionality reductionScikit-learn pipelines. Bestandsnummer des Verkäufers LU-9781492047544
Anzahl: Mehr als 20 verfügbar