Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help.
Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows.
With this book, you'll learn:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ethan Cowan works on software and research topics as part of the Open Differential Privacy (OpenDP) team at Harvard. In particular, he focuses on privatizing machine learning models and developing platforms for analyzing sensitive data with built-in differential privacy. Ethan also works at the intersection of ethics, fairness, and federated learning. Michael Shoemate works for the research organization TwoRavens, developing tools for visualizing data and conducting statistical analysis. His work has been spread over several different projects: the core project, metadata service, and EventData. He's also built a collection of reusable modular UI components he's named "common" for rapid and homogenous frontend development in Mithril. Mayana Pereira works on applying machine learning and privacy-preserving techniques to a diverse range of practical problems at Microsoft's AI for Good Team. Mayana is also an active collaborator of OpenDP, an open-source project for the differential privacy community to develop general-purpose, vetted, usable, and scalable tools for differential privacy.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,23 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 18,11 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: BEST BOOK, Richardson, TX, USA
paperback. Zustand: New. Ship within 24hrs. 100% Satisfaction is Our #1 Goal! Bestandsnummer des Verkäufers B7-00011
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Bestandsnummer des Verkäufers NW9781492097747
Anzahl: 2 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp 1.27. Book. Bestandsnummer des Verkäufers BBS-9781492097747
Anzahl: 5 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9781492097747
Anzahl: 2 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9781492097747
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781492097747_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 45654251-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781492097747
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Bestandsnummer des Verkäufers V9781492097747
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorEthan Cowan works on software and research topics as part of the Open Differential Privacy (OpenDP) team at Harvard. In particular, he focuses on privatizing machine learning models and developing platforms for analyzi. Bestandsnummer des Verkäufers 571464383
Anzahl: 2 verfügbar