Verwandte Artikel zu A First Course in Machine Learning (Chapman & Hall/CRC...

A First Course in Machine Learning (Chapman & Hall/CRC Machine Learning & Pattern Recognition) - Hardcover

 
9781498738484: A First Course in Machine Learning (Chapman & Hall/CRC Machine Learning & Pattern Recognition)

Inhaltsangabe

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."-Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden"This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."-Daniel Barbara, George Mason University, Fairfax, Virginia, USA"The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning., The book introduces concepts such as mathematical modeling, inference, and prediction, providing `just in time' the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."-Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark"I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength...Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."-David Clifton, University of Oxford, UK"The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Ga

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

"This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning. The prerequisites on math or statistics are minimal and following the content is a fairly easy process. The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."
―Guangzhi Qu, Oakland University, Rochester, Michigan, USA

"The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing ‘just in time’ the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts. One of the strengths of the book is its practical approach. An extensive collection of code written in MATLAB/Octave, R, and Python is available from an associated web page that allows the reader to change models and parameter values to make [it] easier to understand and apply these models in real applications. The authors [also] introduce more advanced, state-of-the-art machine learning methods, such as Gaussian process models and advanced mixture models, which are used across machine learning. This makes the book interesting not only to students with little or no background in machine learning but also to more advanced graduate students interested in statistical approaches to machine learning."
―Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark

"A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."
―Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden

"This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."
―Daniel Barbara, George Mason University, Fairfax, Virginia, USA

"I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength. While there are other books available that aim for completeness, with exhaustively comprehensive introductions to every branch of machine learning, the book by Rogers and Girolami starts with the basics, builds a solid and logical foundation of methodology, before introducing some more advanced topics. The essentials of the model construction, validation, and evaluation process are communicated clearly and in such a manner as to be accessible to the student taking such a course. I was also pleased to see that the authors have not shied away from producing algebraic derivations throughout, which are for many students an essential part of the learning process―many other texts omit such details, leaving them as ‘an exercise for the reader.’ Being shown the explicit steps required for such derivations is an important part of developing a sense of confidence in the student. Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."
―David Clifton, University of Oxford, UK

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagChapman and Hall/CRC
  • Erscheinungsdatum2016
  • ISBN 10 1498738486
  • ISBN 13 9781498738484
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten397

Gebraucht kaufen

Zustand: Befriedigend
Connecting readers with great books...
Diesen Artikel anzeigen

EUR 3,31 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 3,52 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780367574642: A First Course in Machine Learning (Chapman & Hall/CRC Machine Learning & Pattern Recognition)

Vorgestellte Ausgabe

ISBN 10:  0367574640 ISBN 13:  9780367574642
Verlag: Chapman and Hall/CRC, 2020
Softcover

Suchergebnisse für A First Course in Machine Learning (Chapman & Hall/CRC...

Beispielbild für diese ISBN

Rogers, Simon,Girolami, Mark
Verlag: Chapman and Hall/CRC, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Gebraucht Hardcover

Anbieter: HPB-Red, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_429928408

Verkäufer kontaktieren

Gebraucht kaufen

EUR 55,32
Währung umrechnen
Versand: EUR 3,31
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rogers, Simon; Girolami, Mark
Verlag: CRC Press, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Gebraucht Hardcover

Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less 1.75. Bestandsnummer des Verkäufers G1498738486I2N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 58,94
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rogers, Simon
Verlag: Chapman & Hall, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: TextbookRush, Grandview Heights, OH, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Bestandsnummer des Verkäufers 54545086

Verkäufer kontaktieren

Neu kaufen

EUR 65,96
Währung umrechnen
Versand: EUR 3,52
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

Rogers, Simon; Girolami, Mark
Verlag: Chapman and Hall/CRC, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26062545-n

Verkäufer kontaktieren

Neu kaufen

EUR 85,22
Währung umrechnen
Versand: EUR 2,33
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mark Girolami
Verlag: Taylor and Francis Inc, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FT-9781498738484

Verkäufer kontaktieren

Neu kaufen

EUR 87,63
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mark Girolami
Verlag: Taylor and Francis Inc, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers FT-9781498738484

Verkäufer kontaktieren

Neu kaufen

EUR 82,05
Währung umrechnen
Versand: EUR 6,91
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Rogers, Simon; Girolami, Mark
Verlag: Chapman and Hall/CRC, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 26062545

Verkäufer kontaktieren

Gebraucht kaufen

EUR 87,36
Währung umrechnen
Versand: EUR 2,33
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Rogers, Simon; Girolami, Mark
Verlag: Chapman and Hall/CRC, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 26062545

Verkäufer kontaktieren

Gebraucht kaufen

EUR 75,19
Währung umrechnen
Versand: EUR 17,65
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Simon Rogers
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: Grand Eagle Retail, Fairfield, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: new. Hardcover. "A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden"This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."Daniel Barbara, George Mason University, Fairfax, Virginia, USA"The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing just in time the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark"I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strengthOverall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."David Clifton, University of Oxford, UK"The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK"This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learningThe book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."Guangzhi Qu, Oakland University, Rochester, Michigan, USA The new edition of this popular, undergraduate textbook has been revised and updated to reflect current growth areas in Machine Learning. The new edition includes three new chapters with more detailed discussion of Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9781498738484

Verkäufer kontaktieren

Neu kaufen

EUR 94,05
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Rogers, Simon; Girolami, Mark
Verlag: Chapman and Hall/CRC, 2016
ISBN 10: 1498738486 ISBN 13: 9781498738484
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26062545-n

Verkäufer kontaktieren

Neu kaufen

EUR 77,18
Währung umrechnen
Versand: EUR 17,65
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Es gibt 12 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen