A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance. This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable.
Nicholas Roy is Associate Professor of Aeronautics and Astronautics at MIT and General Chair of RSS 2012.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 23,75 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 3,60 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Vereinigtes Königreich
Zustand: Very Good. Unused, some outer edges have minor scuffs, cover has light scratches, some outer pages have marks from shelf wear, book content is in like new condition. Bestandsnummer des Verkäufers 101703-7
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2811580106163
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781601987600
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781601987600
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781601987600
Anzahl: 10 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781601987600_new
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 142. Bestandsnummer des Verkäufers C9781601987600
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 92 pages. 8.98x5.98x0.16 inches. In Stock. Bestandsnummer des Verkäufers x-1601987609
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Inhaltsverzeichnis1: Introduction 2: Dynamic Programming and Reinforcement Learning 3: Representations 4: Empirical Results 5: Summary. Acknowledgements. References.KlappentextA Markov Decision Process (. Bestandsnummer des Verkäufers 4231663
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance.This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable. Bestandsnummer des Verkäufers 9781601987600
Anzahl: 1 verfügbar