Verwandte Artikel zu Mining Heterogeneous Information Networks: Principles...

Mining Heterogeneous Information Networks: Principles and Methodologies (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9781608458806: Mining Heterogeneous Information Networks: Principles and Methodologies (Synthesis Lectures on Data Mining and Knowledge Discovery)

Inhaltsangabe

Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge.

In this book, we investigate the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, our semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network. This semi-structured heterogeneous network modeling leads to a series of new principles and powerful methodologies for mining interconnected data, including: (1) rank-based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation strength-aware mining, and many other potential developments. This book introduces this new research frontier and points out some promising research directions.

Table of Contents: Introduction / Ranking-Based Clustering / Classification of Heterogeneous Information Networks / Meta-Path-Based Similarity Search / Meta-Path-Based Relationship Prediction / Relation Strength-Aware Clustering with Incomplete Attributes / User-Guided Clustering via Meta-Path Selection / Research Frontiers

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected networks. By structuring these data objects and interactions between these objects into multiple types, such networks become semi-structured heterogeneous information networks. Most real-world applications that handle big data, including interconnected social media and social networks, scientific, engineering, or medical information systems, online e-commerce systems, and most database systems, can be structured into heterogeneous information networks. Therefore, effective analysis of large-scale heterogeneous information networks poses an interesting but critical challenge. In this book, we investigate the principles and methodologies of mining heterogeneous information networks. Departing from many existing network models that view interconnected data as homogeneous graphs or networks, our semi-structured heterogeneous information network model leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich knowledge from the network. This semi-structured heterogeneous network modeling leads to a series of new principles and powerful methodologies for mining interconnected data, including: (1) rank-based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation strength-aware mining, and many other potential developments. This book introduces this new research frontier and points out some promising research directions. Table of Contents: Introduction / Ranking-Based Clustering / Classification of Heterogeneous Information Networks / Meta-Path-Based Similarity Search / Meta-Path-Based Relationship Prediction / Relation Strength-Aware Clustering with Incomplete Attributes / User-Guided Clustering via Meta-Path Selection / Research Frontiers

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Ex-library with the usual features...
Diesen Artikel anzeigen

EUR 3,40 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031007743: Mining Heterogeneous Information Networks: Principles and Methodologies (Synthesis Lectures on Data Mining and Knowledge Discovery)

Vorgestellte Ausgabe

ISBN 10:  3031007743 ISBN 13:  9783031007743
Verlag: Springer, 2012
Softcover

Suchergebnisse für Mining Heterogeneous Information Networks: Principles...

Beispielbild für diese ISBN

Yizhou Sun; Jiawei Han
Verlag: Morgan & Claypool, 2012
ISBN 10: 1608458806 ISBN 13: 9781608458806
Gebraucht Soft Cover

Anbieter: BookOrders, Russell, IA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Soft Cover. Zustand: Good. Ex-library with the usual features. Library label on front cover. The interior is clean and tight. Binding is good. Cover shows very light wear. Ex-Library. Bestandsnummer des Verkäufers 121980

Verkäufer kontaktieren

Gebraucht kaufen

EUR 24,51
Währung umrechnen
Versand: EUR 3,40
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb