Verwandte Artikel zu MLOps Engineering at Scale: Deploying Pytorch Models...

MLOps Engineering at Scale: Deploying Pytorch Models on Aws - Softcover

 
9781617297762: MLOps Engineering at Scale: Deploying Pytorch Models on Aws

Inhaltsangabe

Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system’s infrastructure. Following a real-world use case for calculating taxi fares, you’ll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you’re free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You’ll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you’ll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you’ll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you’re done, you’ll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside

  • Extracting, transforming, and loading datasets
  • Querying datasets with SQL
  • Understanding automatic differentiation in PyTorch
  • Deploying trained models and pipelines as a service endpoint
  • Monitoring and managing your pipeline’s life cycle
  • Measuring performance improvements
about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world’s foremost experts in machine learning and also helped manage the company’s efforts to democratize artificial intelligence. You can learn more about Carl from his blog   Clouds With Carl.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Carl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless cloud computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world’s foremost experts in machine learning and helped manage the company’s efforts to democratize artificial intelligence with Google Cloud and TensorFlow. Carl is an author of over 20 articles in professional, trade, and academic journals; an inventor with six patents at USPTO; and the holder of three corporate technology awards from IBM.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,06 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 3,41 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für MLOps Engineering at Scale: Deploying Pytorch Models...

Foto des Verkäufers

Carl Osipov
Verlag: Manning Publications, US, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Paperback

Anbieter: Rarewaves USA, OSWEGO, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. Bestandsnummer des Verkäufers LU-9781617297762

Verkäufer kontaktieren

Neu kaufen

EUR 50,06
Währung umrechnen
Versand: EUR 3,41
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Foto des Verkäufers

Carl Osipov
Verlag: Manning Publications, US, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Paperback

Anbieter: Rarewaves USA United, OSWEGO, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. Bestandsnummer des Verkäufers LU-9781617297762

Verkäufer kontaktieren

Neu kaufen

EUR 51,88
Währung umrechnen
Versand: EUR 3,41
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

0
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Basi6 International, Irving, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-11667

Verkäufer kontaktieren

Neu kaufen

EUR 55,30
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-28866

Verkäufer kontaktieren

Neu kaufen

EUR 55,30
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: SMASS Sellers, IRVING, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Bestandsnummer des Verkäufers ASNT3-28866

Verkäufer kontaktieren

Neu kaufen

EUR 57,08
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18389786237

Verkäufer kontaktieren

Neu kaufen

EUR 55,29
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26389786231

Verkäufer kontaktieren

Neu kaufen

EUR 53,48
Währung umrechnen
Versand: EUR 7,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Osipov, Carl
Verlag: Manning Publications, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. &Uumlber den AutorrnrnCarl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture . Bestandsnummer des Verkäufers 408052410

Verkäufer kontaktieren

Neu kaufen

EUR 63,57
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 390862248

Verkäufer kontaktieren

Neu kaufen

EUR 53,50
Währung umrechnen
Versand: EUR 10,21
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 42620453-n

Verkäufer kontaktieren

Neu kaufen

EUR 47,73
Währung umrechnen
Versand: EUR 17,06
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 18 verfügbar

In den Warenkorb

Es gibt 9 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen