Verwandte Artikel zu Outlier Detection for Temporal Data (Synthesis Lectures...

Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9781627053754: Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Inhaltsangabe

Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc.

Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.

Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.

Biografía del autor

Microsoft India and International Institute of Information Technology, Hyderabad, India

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMorgan & Claypool Publishers
  • Erscheinungsdatum2014
  • ISBN 10 1627053751
  • ISBN 13 9781627053754
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten130
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Gut
Fast Shipping - Safe and Secure...
Diesen Artikel anzeigen

EUR 64,92 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031007774: Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Vorgestellte Ausgabe

ISBN 10:  3031007778 ISBN 13:  9783031007774
Verlag: Springer, 2014
Softcover

Suchergebnisse für Outlier Detection for Temporal Data (Synthesis Lectures...

Foto des Verkäufers

Gupta, Manish|Gao, Jing|Aggarwal, Charu
Verlag: MORGAN & CLAYPOOL, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnOutlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-tempo. Bestandsnummer des Verkäufers 464165663

Verkäufer kontaktieren

Neu kaufen

EUR 69,18
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jing Gao Charu Aggarwal Manish Gupta
ISBN 10: 1627053751 ISBN 13: 9781627053754
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 130. Bestandsnummer des Verkäufers 26359067243

Verkäufer kontaktieren

Neu kaufen

EUR 62,70
Währung umrechnen
Versand: EUR 7,79
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Gao Jing Aggarwal Charu Gupta Manish
ISBN 10: 1627053751 ISBN 13: 9781627053754
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 130 3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 353456564

Verkäufer kontaktieren

Neu kaufen

EUR 62,70
Währung umrechnen
Versand: EUR 10,39
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Gupta, Manish,Gao, Jing,Aggarwal, Charu,Han, Jiawei
ISBN 10: 1627053751 ISBN 13: 9781627053754
Gebraucht paperback

Anbieter: suffolkbooks, Center moriches, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week! Bestandsnummer des Verkäufers 3TWOWA001NC7

Verkäufer kontaktieren

Gebraucht kaufen

EUR 28,98
Währung umrechnen
Versand: EUR 64,92
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Gupta, Manish, Gao, Jing, Aggarwal, Charu, Han, Jiawei
ISBN 10: 1627053751 ISBN 13: 9781627053754
Gebraucht Paperback

Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers D7F6-5-M-1627053751-5

Verkäufer kontaktieren

Gebraucht kaufen

EUR 87,58
Währung umrechnen
Versand: EUR 29,36
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb