Verwandte Artikel zu Dictionary Learning in Visual Computing (Synthesis...

Dictionary Learning in Visual Computing (Synthesis Lectures on Image, Video, and Multimedia Processing) - Softcover

 
9781627057776: Dictionary Learning in Visual Computing (Synthesis Lectures on Image, Video, and Multimedia Processing)

Inhaltsangabe

Páginas:152Géneros:12:TTBM:Imagingsystems&technologySinopsis:Thelastfewyearshavewitnessedfastdevelopmentondictionarylearningapproachesforasetofvisualcomputingtasks,largelyduetotheirutilizationindevelopingnewtechniquesbasedonsparserepresentation.Comparedwithconventionaltechniquesemployingmanuallydefineddictionaries,suchasFourierTransformandWaveletTransform,dictionarylearningaimsatobtainingadictionaryadaptivelyfromthedatasoastosupportoptimalsparserepresentationofthedata.IncontrasttoconventionalclusteringalgorithmslikeK-means,whereadatapointisassociatedwithonlyoneclustercenter,inadictionary-basedrepresentation,adatapointcanbeassociatedwithasmallsetofdictionaryatoms.Thus,dictionarylearningprovidesamoreflexiblerepresentationofdataandmayhavethepotentialtocapturemorerelevantfeaturesfromtheoriginalfeaturespaceofthedata.OneoftheearlyalgorithmsfordictionarylearningisK-SVD.Inrecentyears,manyvariations/extensionsofK-SVDandothernewalgorithmshavebeenproposed,withsomeaimingataddingdiscriminativecapabilitytothedictionary,andsomeattemptingtomodeltherelationshipofmultipledictionaries.Oneprominentapplicationofdictionarylearningisinthegeneralfieldofvisualcomputing,wherelong-standingchallengeshaveseenpromisingnewsolutionsbasedonsparserepresentationwithlearneddictionaries.Withatimelyreviewofrecentadvancesofdictionarylearninginvisualcomputing,coveringthemostrecentliteraturewithanemphasisonpapersafter2008,thisbookprovidesasystematicpresentationofthegeneralmethodologies,specificalgorithms,andexamplesofapplicationsforthosewhowishtohaveaquickstartonthissubject._,

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.

Biografía del autor

Qiang Zhang received his B.S. degree in electronic information and technology from Beijing Normal University, Beijing, China in 2009 and his Ph.D. degree in Computer Science from Arizona State University, Tempe, Arizona in 2014. Since 2014, he has been with Samsung, Pasadena, CA as a staff research scientist in computer vision and machine learning. His research interests include image/video processing, computer vision and machine vision, specialized in sparse learning, face recognition, and motion analysis.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMorgan & Claypool Publishers
  • Erscheinungsdatum2015
  • ISBN 10 1627057773
  • ISBN 13 9781627057776
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten152

Gebraucht kaufen

Zustand: Gut
Fast Shipping - Safe and Secure...
Diesen Artikel anzeigen

EUR 3,60 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031011252: Dictionary Learning in Visual Computing (Synthesis Lectures on Image, Video, and Multimedia Processing)

Vorgestellte Ausgabe

ISBN 10:  3031011252 ISBN 13:  9783031011252
Verlag: Springer, 2015
Softcover

Suchergebnisse für Dictionary Learning in Visual Computing (Synthesis...

Beispielbild für diese ISBN

Qiang Zhang,Baoxin Li
Verlag: Morgan & Claypool, 2015
ISBN 10: 1627057773 ISBN 13: 9781627057776
Gebraucht paperback

Anbieter: suffolkbooks, Center moriches, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week! Bestandsnummer des Verkäufers 3TWOWA001O1E

Verkäufer kontaktieren

Gebraucht kaufen

EUR 11,14
Währung umrechnen
Versand: EUR 3,60
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb