This book provides a detailed overview of possible applications of distributed optimization in power systems. Centralized algorithms are widely used for optimization and control in power system applications. These algorithms require all the measurements and data to be accumulated at a central location and hence suffer from single-point-of-failure. Additionally, these algorithms lack scalability in the number of sensors and actuators, especially with the increasing integration of distributed energy resources (DERs). As the power system becomes a confluence of a diverse set of decision-making entities with a multitude of objectives, the preservation of privacy and operation of the system with limited information has been a growing concern. Distributed optimization techniques solve these challenges while also ensuring resilient computational solutions for the power system operation in the presence of both natural and man-made adversaries.
There are numerous commonly-used distributed optimization approaches, and a comprehensive classification of these is discussed and detailed in this work. All of these algorithms have displayed efficient identification of global optimum solutions for convex continuous distributed optimization problems. The algorithms discussed in the literature thus far are predominantly used to manage continuous state variables, however, the inclusion of integer variables in the decision support is needed for specific power system problems.
The mixed integer programming (MIP) problem arises in a power system operation and control due to tap changing transformers, capacitors and switches. There are numerous global optimization techniques for MIPs. Whilst most are able to solve NP-hard convexified MIP problems centrally, they are time consuming and do not scale well for large scale distributed problems. Decomposition and a solution approach of distributed coordination can help to resolve the scalability issue. Despite the fact that a large body of work on the centralized solution methods for convexified MIP problems already exists, the literature on distributed MIPs is relatively limited. The distributed optimization algorithms applied in power networks to solve MIPs are included in this book. Machine Learning (ML) based solutions can help to get faster convergence for distributed optimization or can replace optimization techniques depending on the problem. Finally, a summary and path forward are provided, and the advancement needed in distributed optimization for the power grid is also presented.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,42 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 8,71 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781638282921
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 116. Bestandsnummer des Verkäufers C9781638282921
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781638282921_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781638282921
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781638282921
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 46870960-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46870960
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book provides a detailed overview of possible applications of distributed optimization in power systems. Centralized algorithms are widely used for optimization and control in power system applications. These algorithms require all the measurements and data to be accumulated at a central location and hence suffer from single-point-of-failure. Additionally, these algorithms lack scalability in the number of sensors and actuators, especially with the increasing integration of distributed energy resources (DERs). As the power system becomes a confluence of a diverse set of decision-making entities with a multitude of objectives, the preservation of privacy and operation of the system with limited information has been a growing concern. Distributed optimization techniques solve these challenges while also ensuring resilient computational solutions for the power system operation in the presence of both natural and man-made adversaries. There are numerous commonly-used distributed optimization approaches, and a comprehensive classification of these is discussed and detailed in this work. All of these algorithms have displayed efficient identification of global optimum solutions for convex continuous distributed optimization problems. The algorithms discussed in the literature thus far are predominantly used to manage continuous state variables, however, the inclusion of integer variables in the decision support is needed for specific power system problems.The mixed integer programming (MIP) problem arises in a power system operation and control due to tap changing transformers, capacitors and switches. There are numerous global optimization techniques for MIPs. Whilst most are able to solve NP-hard convexified MIP problems centrally, they are time consuming and do not scale well for large scale distributed problems. Decomposition and a solution approach of distributed coordination can help to resolve the scalability issue. Despite the fact that a large body of work on the centralized solution methods for convexified MIP problems already exists, the literature on distributed MIPs is relatively limited. The distributed optimization algorithms applied in power networks to solve MIPs are included in this book. Machine Learning (ML) based solutions can help to get faster convergence for distributed optimization or can replace optimization techniques depending on the problem. Finally, a summary and path forward are provided, and the advancement needed in distributed optimization for the power grid is also presented. Bestandsnummer des Verkäufers 9781638282921
Anzahl: 1 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 46870960-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 74 pages. 9.21x6.14x0.15 inches. In Stock. Bestandsnummer des Verkäufers x-1638282927
Anzahl: 2 verfügbar