Verwandte Artikel zu An Introduction to Laplacian Spectral Distances and...

An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications (Synthesis Lectures on Visual Computing) - Softcover

 
9781681731391: An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications (Synthesis Lectures on Visual Computing)

Inhaltsangabe

In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances.

Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions.

All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances.

Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions.

All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.

Biografía del autor

Giuseppe Patan is a researcher at CNR-IMATI (2006-today), the Institute for Applied Mathematics and Information Technologies at the Italian National Research Council. Since 2001, his research activities have been focused on the definition of paradigms and algorithms for modeling and analyzing digital shapes and multidimensional data. He received a Ph.D. in Mathematics and Applications from the University of Genova (2005) and a Post-Lauream Master's degree in Applications of Mathematics to Industry from the F. Severi National Institute for Advanced Mathematics, Department of Mathematics and Applications at the University of Milan (2000). University of California, Berkeley

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Fast Shipping - Safe and Secure...
Diesen Artikel anzeigen

EUR 3,41 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031014659: An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications (Synthesis Lectures on Visual Computing: Computer ... Computational Photography and Imaging)

Vorgestellte Ausgabe

ISBN 10:  3031014650 ISBN 13:  9783031014659
Verlag: Springer, 2017
Softcover

Suchergebnisse für An Introduction to Laplacian Spectral Distances and...

Beispielbild für diese ISBN

Patanà , Giuseppe
ISBN 10: 1681731398 ISBN 13: 9781681731391
Gebraucht paperback

Anbieter: suffolkbooks, Center moriches, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week! Bestandsnummer des Verkäufers 3TWOWA001O4R

Verkäufer kontaktieren

Gebraucht kaufen

EUR 17,55
Währung umrechnen
Versand: EUR 3,41
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb