Verwandte Artikel zu Computerized Analysis of Mammographic Images for Detection...

Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer (Synthesis Lectures on Biomedical Engineering) - Softcover

 
9781681731568: Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer (Synthesis Lectures on Biomedical Engineering)

Inhaltsangabe

The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Fast Shipping - Safe and Secure...
Diesen Artikel anzeigen

EUR 3,40 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 4,25 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031005367: Computerized Analysis of Mammographic Images for Detection and Characterization of Breast Cancer (Synthesis Lectures on Biomedical Engineering)

Vorgestellte Ausgabe

ISBN 10:  3031005368 ISBN 13:  9783031005367
Verlag: Springer, 2017
Softcover

Suchergebnisse für Computerized Analysis of Mammographic Images for Detection...

Beispielbild für diese ISBN

Rangaraj M. Rangayyan
ISBN 10: 1681731568 ISBN 13: 9781681731568
Gebraucht paperback

Anbieter: suffolkbooks, Center moriches, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Fast Shipping - Safe and Secure 7 days a week! Bestandsnummer des Verkäufers 3TWDDA005EIT

Verkäufer kontaktieren

Gebraucht kaufen

EUR 19,69
Währung umrechnen
Versand: EUR 3,40
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Paolo Casti, Arianna Mencattini, Marcello Salmeri & Rangaraj M. Rangayyan
ISBN 10: 1681731568 ISBN 13: 9781681731568
Gebraucht Softcover/Paperback Erstausgabe

Anbieter: Philip Gibbons Books, Newcastle Emlyn, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover/Paperback. Zustand: As New. No Jacket. First Edition. (Synthesis Lectures on Biomedical Engineering). A digital text - this copy printed in the UK. Quarto-size, 188 pages (xx, 168), numerous images, some in colour, charts, tables &c. bibliography. As new, unread. Pictures show this actual book. UK orders are post-free. Bestandsnummer des Verkäufers 152879

Verkäufer kontaktieren

Gebraucht kaufen

EUR 15,32
Währung umrechnen
Versand: EUR 21,83
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rangaraj M. Rangayyan
ISBN 10: 1681731568 ISBN 13: 9781681731568
Neu Soft cover

Anbieter: BOOKWEST, Phoenix, AZ, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Soft cover. Zustand: New. US SELLER SHIPS FAST FROM USA. Bestandsnummer des Verkäufers DOM-ORD1-SFK-1681731568-PB-1P2-B10

Verkäufer kontaktieren

Neu kaufen

EUR 42,11
Währung umrechnen
Versand: EUR 4,25
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Casti, Paola; Mencattini, Arianna; Salmeri, Marcello
ISBN 10: 1681731568 ISBN 13: 9781681731568
Neu Soft cover

Anbieter: Leopolis, Kraków, Polen

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Soft cover. Zustand: New. 8vo (23.5 cm), XX, 166 pp. Laminated wrappers. Synopsis: The identification and interpretation of the signs of breast cancer in mammographic images from screening programs can be very difficult due to the subtle and diversified appearance of breast disease. This book presents new image processing and pattern recognition techniques for computer-aided detection and diagnosis of breast cancer in its various forms. The main goals are: (1) the identification of bilateral asymmetry as an early sign of breast disease which is not detectable by other existing approaches; and (2) the detection and classification of masses and regions of architectural distortion, as benign lesions or malignant tumors, in a unified framework that does not require accurate extraction of the contours of the lesions. The innovative aspects of the work include the design and validation of landmarking algorithms, automatic Tabár masking procedures, and various feature descriptors for quantification of similarity and for contour independent classification of mammographic lesions. Characterization of breast tissue patterns is achieved by means of multidirectional Gabor filters. For the classification tasks, pattern recognition strategies, including Fisher linear discriminant analysis, Bayesian classifiers, support vector machines, and neural networks are applied using automatic selection of features and cross-validation techniques. Computer-aided detection of bilateral asymmetry resulted in accuracy up to 0.94, with sensitivity and specificity of 1 and 0.88, respectively. Computer-aided diagnosis of automatically detected lesions provided sensitivity of detection of malignant tumors in the range of [0.70, 0.81] at a range of falsely detected tumors of [0.82, 3.47] per image. The techniques presented in this work are effective in detecting and characterizing various mammographic signs of breast disease. Bestandsnummer des Verkäufers 008479

Verkäufer kontaktieren

Neu kaufen

EUR 36,25
Währung umrechnen
Versand: EUR 15,00
Von Polen nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb