Verwandte Artikel zu Numerical Integration of Space Fractional Partial Differenti...

Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R (Synthesis Lectures on Mathematics and Statistics) - Hardcover

 
9781681732657: Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R (Synthesis Lectures on Mathematics and Statistics)

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. The Caputo derivative is defined as a convolution integral. Thus, rather than being local (with a value at a particular point in space), the Caputo derivative is non-local (it is based on an integration in space), which is one of the reasons that it has properties not shared by integer derivatives. A principal objective of the two volumes is to provide the reader with a set of documented R routines that are discussed in detail, and can be downloaded and executed without having to first study the details of the relevant numerical analysis and then code a set of routines. In the first volume, the emphasis is on basic concepts of SFPDEs and the associated numerical algorithms. The presentation is not as formal mathematics, e.g., theorems and proofs. Rather, the presentation is by examples of SFPDEs, including a detailed discussion of the algorithms for computing numerical solutions to SFPDEs and a detailed explanation of the associated source code.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMorgan & Claypool
  • Erscheinungsdatum2017
  • ISBN 10 1681732653
  • ISBN 13 9781681732657
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten202
  • HerausgeberKrantz Steven G
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9781681732077: Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R (Synthesis Lectures on Mathematics and Statistics)

Vorgestellte Ausgabe

ISBN 10:  1681732076 ISBN 13:  9781681732077
Verlag: Morgan & Claypool Publishers, 2017
Softcover