Verwandte Artikel zu Graph Representation Learning (Synthesis Lectures on...

Graph Representation Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning) - Softcover

 
9781681739632: Graph Representation Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Inhaltsangabe

This book is a foundational guide to graph representation learning, including state-of-the art advances, and introduces the highly successful graph neural network (GNN) formalism.

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.

It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs -- a nascent but quickly growing subset of graph representation learning.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

William L. Hamilton is an Assistant Professor of Computer Science at McGill University and a Canada CIFAR Chair in AI. His research focuses on graph representation learning as well as applications in computational social science and biology. In recent years, he has published more than 20 papers on graph representation learning at top-tier venues across machine learning and network science, as well as co-organized several large workshops and tutorials on the topic. William's work has been recognized by several awards, including the 2018 Arthur L. Samuel Thesis Award for the best doctoral thesis in the Computer Science department at Stanford University and the 2017 Cozzarelli Best Paper Award from the Proceedings of the National Academy of Sciences.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMorgan & Claypool Publishers
  • Erscheinungsdatum2020
  • ISBN 10 1681739631
  • ISBN 13 9781681739632
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten159
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
Good
Diesen Artikel anzeigen

EUR 29,69 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031004605: Graph Representation Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Vorgestellte Ausgabe

ISBN 10:  3031004604 ISBN 13:  9783031004605
Verlag: Springer, 2020
Softcover

Suchergebnisse für Graph Representation Learning (Synthesis Lectures on...

Beispielbild für diese ISBN

Hamilton, William L.
Verlag: Morgan & Claypool 0, 2020
ISBN 10: 1681739631 ISBN 13: 9781681739632
Gebraucht paperback

Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Good. Good. book. Bestandsnummer des Verkäufers D8S0-3-M-1681739631-3

Verkäufer kontaktieren

Gebraucht kaufen

EUR 277,88
Währung umrechnen
Versand: EUR 29,69
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb