The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.
Osvaldo Martin is a researcher at The National Scientific and Technical Research Council (CONICET), the main organization in charge of the promotion of science and technology in Argentina. He has worked on structural bioinformatics and computational biology problems, especially on how to validate structural protein models. He has experience in using Markov Chain Monte Carlo methods to simulate molecules and loves to use Python to solve data analysis problems. He has taught courses about structural bioinformatics, Python programming, and, more recently, Bayesian data analysis. Python and Bayesian statistics have transformed the way he looks at science and thinks about problems in general. Osvaldo was really motivated to write this book to help others in developing probabilistic models with Python, regardless of their mathematical background. He is an active member of the PyMOL community (a C/Python-based molecular viewer), and recently he has been making small contributions to the probabilistic programming library PyMC3.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Osvaldo Martin is a researcher at The National Scientific and Technical Research Council (CONICET), the main organization in charge of the promotion of science and technology in Argentina. He has worked on structural bioinformatics and computational biology problems, especially on how to validate structural protein models. He has experience in using Markov Chain Monte Carlo methods to simulate molecules and loves to use Python to solve data analysis problems. He has taught courses about structural bioinformatics, Python programming, and, more recently, Bayesian data analysis. Python and Bayesian statistics have transformed the way he looks at science and thinks about problems in general. Osvaldo was really motivated to write this book to help others in developing probabilistic models with Python, regardless of their mathematical background. He is an active member of the PyMOL community (a C/Python-based molecular viewer), and recently he has been making small contributions to the probabilistic programming library PyMC3.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 27,56 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,55 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781785883804
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781785883804_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorrnrnOsvaldo Martin is a researcher at The National Scientific and Technical Research Council (CONICET), the main organization in charge of the promotion of science and technology in Argentina. He has worked on structural bioin. Bestandsnummer des Verkäufers 513025976
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781785883804
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781785883804
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Bayesian Analysis with Python: Unleash the power and flexibility of the Bayesian framework 1.08. Book. Bestandsnummer des Verkäufers BBS-9781785883804
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 29164476-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781785883804
Anzahl: 10 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Bestandsnummer des Verkäufers C9781785883804
Anzahl: Mehr als 20 verfügbar
Anbieter: Hilltop Book Shop, Marshfield, WI, USA
Paperback. Zustand: Very Good. Paperback in very good condition. Light edge wear to covers. Clean pages free of writing, marks or tears. Binding is secure. No spine creases. Buy with confidence! 100% satisfaction guaranteed. Bestandsnummer des Verkäufers 2009280001
Anzahl: 1 verfügbar