Master the art of machine learning with .NET and gain insight into real-world applications
Key Features:
Book Description:
.Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines.
This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions.
You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results.
Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly.
What you will learn:
Who this book is for:
This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Jamie Dixon has been writing code for as long as he can remember and has been getting paid to do it since 1995. He was using C# and JavaScript almost exclusively until discovering F#, and now combines all three languages for the problem at hand. He has a passion for discovering overlooked gems in datasets and merging software engineering techniques to scientific computing. When he codes for fun, he spends his time using Phidgets, Netduinos, and Raspberry Pis or spending time in Kaggle competitions using F# or R. Jamie is a bachelor of science in computer science and has been an F# MVP since 2014. He is the former chair of his town's Information Services Advisory Board and is an outspoken advocate of open data. He is also involved with his local .NET User Group (TRINUG) with an emphasis on data analytics, machine learning, and the Internet of Things (IoT). Jamie lives in Cary, North Carolina with his wonderful wife Jill and their three awesome children: Sonoma, Sawyer, and Sloan. He blogs weekly at jamessdixon.wordpress.com and can be found on Twitter at @jamie_dixon.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Good. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Bestandsnummer des Verkäufers 1785888404-11-1
Anzahl: 1 verfügbar
Anbieter: Bay State Book Company, North Smithfield, RI, USA
Zustand: very_good. Bestandsnummer des Verkäufers BSM.W28L
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160171005
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781785888403
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781785888403
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781785888403
Anzahl: 10 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781785888403
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorrnrnJamie Dixon has been writing code for as long as he can remember and has been getting paid to do it since 1995. He was using C# and JavaScript almost exclusively until discovering F#, and now combines all three languages f. Bestandsnummer des Verkäufers 448321780
Anzahl: Mehr als 20 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA79717858884046
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Mastering .NET Machine Learning | Use machine learning in your .NET applications | Jamie Dixon | Taschenbuch | Kartoniert / Broschiert | Englisch | 2016 | Packt Publishing | EAN 9781785888403 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 109303135
Anzahl: 5 verfügbar