Deep Learning for EEG-Based Brain–Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain–Computer Interfaces (BCI) in terms of representations, algorithms and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices. This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI data sets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Xiang Zhang is a postdoc fellow at Harvard University, working with Prof. Marinka Zitnik in Machine Intelligence for Medicine and Science (MIMS) lab. He received his PhD degree (in 2020) at School of Computer Science from the University of New South Wales (UNSW) while supervised by Dr Lina Yao. Xiang has a number of publications on the top venues including SIGKDD, ICDM, UbiComp, IJCAI, PerCom, AAAI, ACM TIST, and IEEE Internet of Things Journal. Moreover, Xiang has been awarded Google PhD Fellowship 2018 in Human Computer Interface on a super competitive basis (4 recipients in Australia among 57 recipients global). He was also selected for EPFL Engineering PhD Summit (11 winners out of 200+ applicants). Xiang's research interests lay in graph representation learning, data mining, and deep learning with focusing applications on neurological diagnosis, user authentication, biomedical sciences, health care, and Brain-Computer Interface (BCI). Lina Yao is currently a Scientia Senior Lecturer at School of Computer Science and Engineering, the University of New South Wales (UNSW). She was awarded Australia Research Council (ARC) Discovery Early Career Researcher Award (DECRA) and Inaugural Vice Chancellor's Women's Research Excellence Award (University of Adelaide) in 2015, and Scientia Fellowship (UNSW) in 2020. She currently serves as Associate Editor for ACM Transactions on Sensor Networks (TOSN) and PC members of several most prestigious data mining and machine learning international conferences including NeurIPS, KDD, SIGIR, AAAI, IJCAI, ICDM, and ACM MM. Lina has published around 200 papers on top journal and conferences, along with four books/chapters. Lina is directing the Data Dynamics Lab (D² Lab) that strives for developing novel data mining, machine learning and deep learning algorithms ― as well as designing systems and interfaces ― to enable novel ways of human-machine interactions, including an improved understanding of challenges such as robustness, trust, explainability and resilience that improve human-autonomy partnership. Her research is motivated by, and contributes to, various applications in Information Filtering, Healthcare Informatics, Cyber Security, Transportation, Industry 4.0 and E-commerce.
Deep Learning for EEG-based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms, and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.
This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI datasets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,50 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-233277
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-116382
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18388179800
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26388179794
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 391420045
Anzahl: 1 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781786349583
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 42293020-n
Anzahl: 2 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. New copy - Usually dispatched within 4 working days. 526. Bestandsnummer des Verkäufers B9781786349583
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 340 pages. 9.00x6.00x0.69 inches. In Stock. This item is printed on demand. Bestandsnummer des Verkäufers __1786349582
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781786349583_new
Anzahl: 2 verfügbar