Build effective regression models in R to extract valuable insights from real data
Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables.
This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are - supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process - loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples.
By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects.
This book is intended for budding data scientists and data analysts who want to implement regression analysis techniques using R. If you are interested in statistics, data science, machine learning and wants to get an easy introduction to the topic, then this book is what you need! Basic understanding of statistics and math will help you to get the most out of the book. Some programming experience with R will also be helpful
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Build effective regression models in R to extract valuable insights from real data
Key Features
Book Description
Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables.
This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are - supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process - loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples.
By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects.
What you will learn
Who This Book Is For
This book is intended for budding data scientists and data analysts who want to implement regression analysis techniques using R. If you are interested in statistics, data science, machine learning and wants to get an easy introduction to the topic, then this book is what you need! Basic understanding of statistics and math will help you to get the most out of the book. Some programming experience with R will also be helpful
Table of Contents
Giuseppe Ciaburro holds a PhD in environmental technical physics and two master's degrees. His research was focused on machine learning applications in the study of the urban sound environments. He works at Built Environment Control Laboratory - Universita degli Studi della Campania Luigi Vanvitelli (Italy). He has over 15 years of work experience in programming (Python, R, and MATLAB), first in the field of combustion and then in acoustics and noise control. He has several publications to his credit.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,24 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: -OnTimeBooks-, Phoenix, AZ, USA
Zustand: good. A copy that has been read, remains in good condition. All pages are intact, and the cover is intact. The spine and cover show signs of wear. Pages can include notes and highlighting and show signs of wear, and the copy can include "From the library of" labels or previous owner inscriptions. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships via media mail. Bestandsnummer des Verkäufers OTV.178862730X.G
Anzahl: 1 verfügbar
Anbieter: -OnTimeBooks-, Phoenix, AZ, USA
Zustand: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Bestandsnummer des Verkäufers OTV.178862730X.VG
Anzahl: 1 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00090915035
Anzahl: 5 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00090915279
Anzahl: 2 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Acceptable. Item in acceptable condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00090935763
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Bestandsnummer des Verkäufers ria9781788627306_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781788627306
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Regression analysis is a statistical process which enables prediction of relationships between variables. This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. Each chapter starts with explaining . Bestandsnummer des Verkäufers 310949703
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781788627306
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781788627306
Anzahl: Mehr als 20 verfügbar