Verwandte Artikel zu Reinforcement Learning Algorithms with Python: Learn,...

Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges - Softcover

 
9781789131116: Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

Inhaltsangabe

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries

Key Features

  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks
  • Understand and develop model-free and model-based algorithms for building self-learning agents
  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies

Book Description

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.

Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.

By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.

What you will learn

  • Develop an agent to play CartPole using the OpenAI Gym interface
  • Discover the model-based reinforcement learning paradigm
  • Solve the Frozen Lake problem with dynamic programming
  • Explore Q-learning and SARSA with a view to playing a taxi game
  • Apply Deep Q-Networks (DQNs) to Atari games using Gym
  • Study policy gradient algorithms, including Actor-Critic and REINFORCE
  • Understand and apply PPO and TRPO in continuous locomotion environments
  • Get to grips with evolution strategies for solving the lunar lander problem

Who this book is for

If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

Table of Contents

  1. The Landscape of Reinforcement Learning
  2. Implementing RL Cycle and OpenAI Gym
  3. Solving Problems with Dynamic Programming
  4. Q learning and SARSA Applications
  5. Deep Q-Network
  6. Learning Stochastic and DDPG optimization
  7. TRPO and PPO implementation
  8. DDPG and TD3 Applications
  9. Model-Based RL
  10. Imitation Learning with the DAgger Algorithm
  11. Understanding Black-Box Optimization Algorithms
  12. Developing the ESBAS Algorithm
  13. Practical Implementation for Resolving RL Challenges

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Andrea Lonza is a deep learning engineer with a great passion for artificial intelligence and a desire to create machines that act intelligently. He has acquired expert knowledge in reinforcement learning, natural language processing, and computer vision through academic and industrial machine learning projects. He has also participated in several Kaggle competitions, achieving high results. He is always looking for compelling challenges and loves to prove himself.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 16,97 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Reinforcement Learning Algorithms with Python: Learn,...

Foto des Verkäufers

Lonza, Andrea
Verlag: Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 38633942

Verkäufer kontaktieren

Gebraucht kaufen

EUR 24,55
Währung umrechnen
Versand: EUR 16,97
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Lonza, Andrea
Verlag: Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision,. Bestandsnummer des Verkäufers 448329952

Verkäufer kontaktieren

Neu kaufen

EUR 44,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrea Lonza
Verlag: Packt Publishing Limited, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu PAP
Print-on-Demand

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 40,21
Währung umrechnen
Versand: EUR 4,67
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lonza, Andrea
Verlag: Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781789131116_new

Verkäufer kontaktieren

Neu kaufen

EUR 39,55
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrea Lonza
Verlag: Packt Publishing Limited, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu PAP
Print-on-Demand

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 45,49
Währung umrechnen
Versand: EUR 0,81
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lonza, Andrea
Verlag: Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 38,47
Währung umrechnen
Versand: EUR 8,49
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Lonza, Andrea
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Reinforcement Learning Algorithms with Python 1.38. Book. Bestandsnummer des Verkäufers BBS-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 37,69
Währung umrechnen
Versand: EUR 10,61
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lonza, Andrea
Verlag: Packt Publishing 2019-10, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 34,57
Währung umrechnen
Versand: EUR 15,05
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Foto des Verkäufers

Andrea Lonza
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Paperback

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and librariesKey FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook DescriptionReinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is forIf you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary. Bestandsnummer des Verkäufers LU-9781789131116

Verkäufer kontaktieren

Neu kaufen

EUR 48,04
Währung umrechnen
Versand: EUR 2,32
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Lonza, Andrea
Verlag: Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 38633942-n

Verkäufer kontaktieren

Neu kaufen

EUR 35,24
Währung umrechnen
Versand: EUR 16,97
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 8 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen