Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework.
Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling.
Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood.
After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field.
This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Simeon Kostadinoff works for a startup called Speechify which aims to help people go through their readings faster by converting any text into speech. Simeon is Machine Learning enthusiast who writes a blog and works on various projects on the side. He enjoys reading different research papers and implement some of them in code. He was ranked number 1 in mathematics during his senior year of high school and thus he has deep passion about understanding how the deep learning models work under the hood. His specific knowledge in Recurrent Neural Networks comes from several courses that he has taken at Stanford University and University of Birmingham. They helped in understanding how to apply his theoretical knowledge into practice and build powerful models. In addition, he recently became a Stanford Scholar Initiative which includes working in a team of Machine Learning researchers on a specific deep learning research paper.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 0,57 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789132335
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781789132335_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions fo. Bestandsnummer des Verkäufers 448329961
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789132335
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781789132335
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Bestandsnummer des Verkäufers C9781789132335
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Recurrent Neural Networks with Python Quick Start Guide 0.49. Book. Bestandsnummer des Verkäufers BBS-9781789132335
Anzahl: 5 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 122. Bestandsnummer des Verkäufers 18384417582
Anzahl: 4 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781789132335
Anzahl: 10 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 122. Bestandsnummer des Verkäufers 26384417572
Anzahl: 4 verfügbar