Develop generative models for a variety of real-world use-cases and deploy them to production
Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step towards understanding GAN architectures and tackling the challenges involved in training them.
This book opens with an introduction to deep learning and generative models, and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that give you the ability to control characteristics of GAN outputs. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN.
By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing.
Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA
This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking for a perfect mix of theory and hands-on content in order to implement GANs using Keras. Working knowledge of Python is expected.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Rafael Valle is a research scientist at NVIDIA focusing on audio applications. He has years of experience developing high performance machine learning models for data/audio analysis, synthesis and machine improvisation with formal specifications. Dr. Valle was the first to generate speech samples from scratch with GANs and to show that simple yet efficient techniques can be used to identify GAN samples. He holds an Interdisciplinary PhD in Machine Listening and Improvisation from UC Berkeley, a Master’s degree in Computer Music from the MH-Stuttgart in Germany and a Bachelor’s degree in Orchestral Conducting from UFRJ in Brazil.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,40 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 3,40 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Blindpig Books, Salt lake city, UT, USA
Paperback. Zustand: Used - Good. Light wear. Good copy. Bestandsnummer des Verkäufers 22-06-05-gw-14200-jm
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160185168
Anzahl: Mehr als 20 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9781789538205
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781789538205
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Hands-On Generative Adversarial Networks with Keras 1.04. Book. Bestandsnummer des Verkäufers BBS-9781789538205
Anzahl: 5 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789538205
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789538205
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Develop generative models for a variety of real-world use-cases and deploy them to productionKey FeaturesDiscover various GAN architectures using Python and Keras libraryUnderstand how GAN models function with the help of theoretical and practical examplesApply your learnings to become an active contributor to open source GAN applicationsBook DescriptionGenerative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step towards understanding GAN architectures and tackling the challenges involved in training them.This book opens with an introduction to deep learning and generative models, and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that give you the ability to control characteristics of GAN outputs. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN.By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing.Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIAWhat you will learnLearn how GANs work and the advantages and challenges of working with themControl the output of GANs with the help of conditional GANs, using embedding and space manipulationApply GANs to computer vision, NLP, and audio processingUnderstand how to implement progressive growing of GANsUse GANs for image synthesis and speech enhancementExplore the future of GANs in visual and sonic artsImplement pix2pixHD to turn semantic label maps into photorealistic imagesWho this book is forThis book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking for a perfect mix of theory and hands-on content in order to implement GANs using Keras. Working knowledge of Python is expected. Bestandsnummer des Verkäufers LU-9781789538205
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781789538205_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 320. Bestandsnummer des Verkäufers 371140769
Anzahl: 4 verfügbar